首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
With inhibition or absence of the bradykinin B2 receptor (B2R), B1R is upregulated and assumes some of the hemodynamic properties of B2R, indicating that both participate in the maintenance of normal vasoregulation or to development of hypertension. Herein we further evaluate the role of bradykinin in normal blood pressure (BP) regulation and its relationship with other vasoactive factors by selectively blocking its receptors. Six groups of Wistar rats were treated for 3 wk: one control group with vehicle alone, one with concurrent administration of B1R antagonist R-954 (70 microg x kg(-1) x day(-1)) and B2R antagonist HOE-140 (500 microg x kg(-1) x day(-1)), one with R-954 alone, one with HOE 140 alone, one with concurrent administration of both R-954 and HOE-140 plus the angiotensin antagonist losartan (5 mg x kg(-1) x day(-1)), and one with only losartan. BP was measured continuously by radiotelemetry. Only combined administration of B1R and B2R antagonists produced a significant BP increase from a baseline of 107-119 mmHg at end point, which could be partly prevented by losartan and was not associated with change in catecholamines, suggesting no involvement of the sympathoadrenal system. The impact of blockade of bradykinin on other vasoregulating systems was assessed by evaluating gene expression of different vasoactive factors. There was upregulation of the eNOS, AT1 receptor, PGE2 receptor, and tissue kallikrein genes in cardiac and renal tissues, more pronounced when both bradykinin receptors were blocked; significant downregulation of AT2 receptor gene in renal tissues only; and no consistent changes in B1R and B2R genes in either tissue. The results indicate that both B1R and B2R contribute to the maintenance of normal BP, but one can compensate for inhibition of the other, and the chronic inhibition of both leads to significant upregulation in the genes of related vasoactive systems.  相似文献   

3.
Imig JD  Zhao X  Orengo SR  Dipp S  El-Dahr SS 《Peptides》2003,24(8):1141-1147
Angiotensin converting enzyme (ACE) inhibition leads to increased levels of bradykinin, cyclooxygenase-2 (COX-2), and renin. Since bradykinin stimulates prostaglandin release, renin synthesis may be regulated through a kinin-COX-2 pathway. To test this hypothesis, we examined the impact of bradykinin B2 receptor (B2R) gene disruption in mice on kidney COX-2 and renin gene expression. Kidney COX-2 mRNA and protein levels were significantly lower in B2R-/- mice by 40-50%. On the other hand, renal COX-1 levels were similar in B2R-/- and +/+ mice. Renal renin protein was 61% lower in B2R-/- compared to B2R+/+ mice. This was accompanied by a significant reduction in renin mRNA levels in B2R-/- mice. Likewise, intrarenal angiotensin I levels were significantly lower in B2R-/- mice compared to B2R+/+ mice. In contrast, kidney angiotensin II levels were not different and averaged 261+/-16 and 266+/-15fmol/g in B2R+/+ and B2R-/- mice, respectively. Kidney angiotensinogen, AT1 receptor and ACE activity were not different between B2R+/+ and B2R-/- mice. The results of these studies demonstrate suppression of renal renin synthesis in mice lacking the bradykinin B2R and support the notion that B2R regulation of COX-2 participates in the steady-state control of renin gene expression.  相似文献   

4.
Gabra BH  Sirois P 《Peptides》2003,24(8):1131-1139
Kinins are important mediators of cardiovascular homeostasis, inflammation and nociception. Bradykinin (BK) B(1) receptors (BKB1-R) are over-expressed in pathological conditions including diabetes, and were reported to play a role in hyperglycemia, renal abnormalities, and altered vascular permeability associated with type 1 diabetes. Recent studies from our laboratory demonstrated that BKB1-R are implicated in streptozotocin (STZ)-diabetes-mediated hyperalgesia, since acute administration of the selective BKB1-R antagonists significantly and dose-dependently inhibited such hyperalgesic activity. In the present study, we examined the effect of chronic treatment of STZ-diabetic mice with the selective BKB1-R agonist desArg9bradykinin (DBK) and two specific antagonists R-715 and R-954, on diabetic hyperalgesia. Diabetes was induced in male CD-1 mice by injecting a single high dose of STZ (200mg/kg, i.p.) and nociception was assessed using the hot plate, plantar stimulation, tail immersion and tail flick tests. Drugs were injected i.p. twice daily for 7 days, starting 4 days after STZ. We showed that chronically administered R-715 (400 micrograms/kg) and R-954 (200 micrograms/kg), significantly attenuated the hyperalgesic effect developed in STZ-diabetic mice as measured by the four thermal nociceptive tests. Further, chronic treatment with DBK (400 micrograms/kg) produced a marked potentiation of the hyperalgesic activity, an effect that was reversed by both R-715 and R-954. The results from this chronic study confirm a pivotal role of the BKB1-R in the development of STZ-diabetic hyperalgesia and suggest a novel approach to the treatment of this short-term diabetic complication using BKB1-R antagonists.  相似文献   

5.
The morbidity and mortality associated with type 1 diabetes are essentially related to the micro- and macrovascular complications that develop over time and lead to several diabetic complications, including hypertension, atherosclerosis, and retinopathy, as well as coronary and renal failure. Normally absent in physiological conditions, the bradykinin B1 receptor (BKB1-R) was recently found to be overexpressed in pathological conditions, including type 1 diabetes. In the present study, we evaluated the effect of the new BKB1-R antagonist, R-954 (Ac-Orn-[Oic2, alpha-MePhe5, D-betaNal7, Ile8]desArg9-bradykinin, on the increase in vascular permeability in streptozotocin (STZ)-diabetic mice. The capillary permeability to albumin was measured by quantifying the extravasation of albumin-bound Evans blue dye in selected target tissues (liver, pancreas, duodenum, ileum, spleen, heart, kidney, stomach, skin, muscle, and thyroid gland). Acute single administration of R-954 (300 microg/kg, i.v.) to type 1 diabetic mice 4 weeks after STZ significantly inhibited the enhanced vascular permeability in most tissues. These data provide further experimental evidence for the implication of BKB1-R in the enhanced vascular permeability associated with type 1 diabetes.  相似文献   

6.
The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors.  相似文献   

7.
Exocytosis of Weibel-Palade bodies (WPB) represents a distinct response of endothelial cells to stressors, and local release of WPB contents leads to systemic escalation of this response. We synthesized a glycine-(Nα-Et)lysine-proline-arginine (ITF 1697) peptide that has a potential to inhibit exocytosis of WPB and protect microcirculation. Here, we confirmed an inhibitory effect of ITF 1697 using intravital videoimaging and point-tracking of individual organelles. In an in vivo study, mice were implanted with Alzet osmotic pumps (10 μg ITF 1697·kg(-1)·min(-1) at volume of 1 μl/h) and subjected to renal ischemia (IRI). IRI resulted in marked renal injury and elevation of serum creatinine in mice treated with a vehicle. In contrast, renal injury and elevation of creatinine were significantly ameliorated in mice subjected to IRI and receiving ITF 1697. ITF 1697 prevented a systemic response to IRI: a significant surge in the levels of eotaxin and IL-8 (KC; both components of WPB), IL-1α, IL-1β, and RANTES was all prevented or blunted by the administration of ITF 1697, whereas the levels of an anti-inflammatory, IL-10, and macrophage inflammatory protein-1α were upregulated in ITF 1697-treated animals. En face staining of aortic endothelial cells showed that WPB were depleted after 40-180 min post-IRI, and this was significantly blunted in aortic preparations obtained from mice treated with ITF 1697. WPB exocytosis contributed to IRI-associated mobilization of endothelial progenitor cells and hematopoietic stem cells, and ITF 1697 blunted their mobilization. Unexpectedly, 1 mo after IRI, mice treated with ITF 1697 showed a significantly more pronounced degree of scarring than nontreated animals. In conclusion, 1) application of ITF 1697 inhibits exocytosis of WPB and IRI; 2) the systemic inflammatory response of IRI is in part due to the exocytosis of WPB and its blockade blunts it; and 3) ITF 1697 improves short-term renal function after IRI, but not the long-term fibrotic complications.  相似文献   

8.
目的研究小鼠肾缺血再灌注损伤的发病机制。方法建立小鼠肾缺血再灌注损伤模型。12只雄性C57BL/6随机分为2个组(n=6),分别为假手术组(Sham),肾缺血再灌注损伤模型组(IRI)。IRI组血管夹夹闭左肾动脉,置于32℃温箱后1h松开血管夹,去除右肾。Sham组操作同上,但不夹闭左肾动脉。再灌注24h后处死小鼠,收集血清和肾脏标本。测定血清肌酐(Cr)和血尿素氮(BUN)。PAS染色后显微镜下观察肾脏形态学变化,Western印迹分析ERK、p-ERK的表达,PCR检测MCP-1、IFN-γ。结果与假手术组(Sham)相比,IRI组血清肌酐、血尿素氮明显升高,病理检查可见肾脏内肾小管上皮细胞明显肿胀坏死、蛋白管型形成明显,还可观察到炎性细胞浸润明显增加。ERK、p-ERKWestern印迹结果PCR显示MCP-1、TNF-α也明显上调,但ERK表达不变。结论在肾缺血再灌注中,ERK激活介导的炎性后府可能参与了肾扣伤。  相似文献   

9.
Fernandes PD  Gomes Nde M  Sirois P 《Peptides》2011,32(9):1849-1854
The present study investigated the effects of a new bradykinin B1 receptor antagonist, R-954, on the development of Ehrlich ascitic tumor (EAT) induced by the intraperitoneal inoculation of EAT cells in mice and the formation of a solid tumor by the subcutaneous injection of the cells in rat paw. The development of the tumor was associated with an increase in mouse total cell counts in bone marrow (10.8-fold), ascitic fluid (14.6-fold), and blood (12.6-fold). R-954 (2 mg/kg, s.c.) significantly reduced the ascitic fluid volume (63.7%) and the mouse weight gain (30.5%) after 10 consecutive days of treatment. The B1 antagonist as well as the anti-neoplasic drug vincristine also significantly inhibited the increase in total cell count in bone marrow, ascitic fluid, and blood. R-954 reduced significantly the total protein extravasation (57.3%), the production of nitric oxide (56%), PGE2 production (82%), and TNFα release (85.7%) in mice peritoneal cavity whereas vincristine reduced the release of these inflammatory mediators by 84-94%. The increase in paw edema after intraplantar injection of EAT cells was reduced by approximately 52% by either R-954 or vincristine treatment. In conclusion, this study presents for the first time the antitumoral activity of a new bradykinin B1 receptor antagonist on ascitic and solid tumors induced by Ehrlich cell inoculation in mice and rats.  相似文献   

10.
Tea polyphenols (TP) was investigated in rats for its protective effect on renal ischemia/reperfusion injury (RIRI). Rats were randomized into groups as follows: (I) sham group (n = 10); (II) RIRI group (n = 10); (III) RIRI + TP (100 mg/kg) group (n = 5); (IV) RIRI + TP (200 mg/kg) group (n = 5); (V) RIRI + TP+ Astragalus mongholicus aqueous extract (AMAE) (300 mg/kg + 100 mg/kg) group (n = 5). For the IRI + TP groups, rats were orally given with tea polyphenols (100, 200 and 300 mg/kg body weight) once daily 10 days before induction of ischemia, followed by renal IRI. For the sham group and RIRI group, rats were orally given with equal volume of saline once daily 10 days before induction of ischemia, followed by renal IRI. Results showed that tea polyphenol pretreatment significantly suppressed ROS level and MDA release. On the other hand, in rats subjected to ischemia–reperfusion, the activities of endogenous antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) showed recovery, whereas the levels of urea nitrogen and serum creatinine were reduced by administration of tea polyphenols orally for 10 days prior to ischemia–reperfusion. Moreover, tea polyphenol pretreatment significantly decreased TLR4 and NF-κB p65 protein expression levels in RIRI rats. At the same time, tea polyphenol pretreatment attenuated the increased level of serum IL-1β, IL-6, ICAM-1 and TNF-α, and enhanced IL-10 production in RIRI rats. Furthermore, tea polyphenol pretreatment significantly decreased renal epithelial tubular cell apoptosis induced by renal ischemia/reperfusion, alleviating renal ischemia/reperfusion injury. These results cumulatively indicate that tea polyphenol pretreatment could suppress the TLR4/NF-κB p65 signaling pathway, protecting renal tubular epithelial cells against ischemia/reperfusion-induced apoptosis, which implies that antioxidants may be a potential and effective agent for prevention of the ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TLR4/NF-κB p65 signal pathway. Moreover, supplement of AMAE can increased renal protection effect of TP.  相似文献   

11.
Effects of the angiotensin-converting enzyme (ACE) inhibitors, imidapril and enalapril, on kaolin-induced writhing reaction, which is believed to be caused by bradykinin (BK), were examined in mice. The number of writhes was increased significantly by 200 microg/kg of imidapril and by 100 and 200 microg/kg of enalapril. The intensity of writhing reaction was significantly suppressed by 1,000 nmol/kg of icatibant, a selective bradykinin B2 receptor antagonist, in the imidapril-, but not in the enalapril-treated groups. These results suggest that the potentiating effect of enalapril on kaolin-induced writhing reaction is greater than that of imidapril. This might depend on the difference of their inhibitory effects on BK degradation.  相似文献   

12.
Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury. Remote ischemic conditioning (rIC) performed as brief intermittent sub-lethal ischemia and reperfusion episodes in a distant organ may protect the kidney against IRI. Here we investigated the renal effects of rIC applied either prior to (remote ischemic preconditioning; rIPC) or during (remote ischemic perconditioning; rIPerC) sustained ischemic kidney injury in rats. The effects were evaluated as differences in creatinine clearance (CrCl) rate, tissue tubular damage marker expression, and potential kidney recovery mediators. One week after undergoing right-sided nephrectomy, rats were randomly divided into four groups: sham (n = 7), ischemia and reperfusion (IR; n = 10), IR+rIPC (n = 10), and IR+rIPerC (n = 10). The rIC was performed as four repeated episodes of 5-minute clamping of the infrarenal aorta followed by 5-minute release either before or during 37 minutes of left renal artery clamping representing the IRI. Urine and blood were sampled prior to ischemia as well as 3 and 7 days after reperfusion. The kidney was harvested for mRNA and protein isolation. Seven days after IRI, the CrCl change from baseline values was similar in the IR (δ: 0.74 mL/min/kg [-0.45 to 1.94]), IR+rIPC (δ: 0.21 mL/min/kg [-0.75 to 1.17], p > 0.9999), and IR+rIPerC (δ: 0.41 mL/min/kg [-0.43 to 1.25], p > 0.9999) groups. Kidney function recovery was associated with a significant up-regulation of phosphorylated protein kinase B (pAkt), extracellular regulated kinase 1/2 (pERK1/2), and heat shock proteins (HSPs) pHSP27, HSP32, and HSP70, but rIC was not associated with any significant differences in tubular damage, inflammatory, or fibrosis marker expression. In our study, rIC did not protect the kidney against IRI. However, on days 3–7 after IRI, all groups recovered renal function. This was associated with pAkt and pERK1/2 up-regulation and increased HSP expression at day 7.  相似文献   

13.
BackgroundThe prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secreted by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI.MethodsWe used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ETA, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2′-deoxyguanosine, F4/80 and PCNA, respectively.ResultsIRI induced kidney failure and increased ET-1 and ETA receptor expression. This was accompanied by tubular injury, wall thickening and reduction of lumen area/wall area ratio of small renal arteries, increased oxidative stress and inflammation. These parameters were attenuated in VEETKO mice.ConclusionOur results suggest that suppression of ET-1 from the endothelial cells attenuates IRI kidney injury. Blocking ET-1 effects may represent a therapeutic strategy in the management of AKI.  相似文献   

14.
Cytoplasmic innate immune receptors are important therapeutic targets for diseases associated with overproduction of proinflammatory cytokines. One cytoplasmic receptor complex, the Nlrp3 inflammasome, responds to an extensive array of molecules associated with cellular stress. Under normal conditions, Nlrp3 is autorepressed, but in the presence of its ligands, it oligomerizes, recruits apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc), and triggers caspase 1 activation and the maturation of proinflammatory cytokines such as IL-1β and IL-18. Because ischemic tissue injury provides a potential source for Nlrp3 ligands, our study compared and contrasted the effects of renal ischemia in wild-type mice and mice deficient in components of the Nlrp3 inflammasome (Nlrp3(-/-) and Asc(-/-) mice). To examine the role of the inflammasome in renal ischemia-reperfusion injury (IRI) we also tested its downstream targets caspase 1, IL-1β, and IL-18. Both Nlrp3 and Asc were highly expressed in renal tubular epithelium of humans and mice, and the absence of Nlrp3, but not Asc or the downstream inflammasome targets, dramatically protected from kidney IRI. We conclude that Nlrp3 contributes to renal IRI by a direct effect on renal tubular epithelium and that this effect is independent of inflammasome-induced proinflammatory cytokine production.  相似文献   

15.
The chronic hyperglycemia measured alongside diabetes development is associated with significant long-term damage and failure of various organs. In the present study it was shown that hyperglycemia induced early and long term increases in nitric oxide (NO) levels, kallikrein activity and vascular capillary permeability measured as plasma extravasation, and decreases of Na/K ATPase activity in diabetic rat retina 4 and 12 weeks after streptozotocin (STZ) injection. Treatment of the animals for 5 consecutive days with a novel selective bradykinin B(1) receptor (BKB(1)-R) antagonist R-954 (2mg/kg s.c) at the end of the 4 and 12 week periods highly reduced NO, kallikrein and capillary permeability and increased Na/K ATPase activity in the retina. These results suggest that the BKB(1)-R receptor subtype is over-expressed during the streptozotocin-induced development of diabetes in rat retina as evidenced by the inhibitory effects of the BKB(1)-R antagonist R-954 on NO, kallikrein and vascular permeability increases as well as Na/K ATPase decreases. The beneficial role of the BKB(1)-R antagonist R-954 for the treatment of the diabetic retinopathy is also suggested.  相似文献   

16.
Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection.  相似文献   

17.
Ischemic acute renal failure (ARF) is a highly complex disorder involving renal vasoconstriction, filtration failure, tubular obstruction, tubular backleak and generation of reactive oxygen species. Due to this complexity, the aim of our study was to explore effects of Angiotensin II type 1 receptor (AT1R) blockade on kidney structure and function, as well as oxidative stress in spontaneously hypertensive rats (SHR) after renal ischemia reperfusion injury. Experiments were performed on anaesthetized adult male SHR in the model of ARF with 40 minutes clamping the left renal artery. The right kidney was removed and 40 minutes renal ischemia was performed. Experimental groups received AT1R antagonist (Losartan) or vehicle (saline) in the femoral vein 5 minutes before, during and 175 minutes after the period of ischemia. Biochemical parameters were measured and kidney specimens were collected 24h after reperfusion. ARF significantly decreased creatinine and urea clearance, increased LDL and lipid peroxidation in plasma. Treatment with losartan induced a significant increase of creatinine and urea clearance, as well as HDL. Lipid peroxidation in plasma was decreased and catalase enzyme activity in erythrocytes was increased after losartan treatment. Losartan reduced cortico-medullary necrosis and tubular dilatation in the kidney. High expression of pro-apoptotic Bax protein in the injured kidney was downregulated after losartan treatment. Our results reveal that angiotensin II (via AT1R) mediates the most postischemic injuries in hypertensive kidney through oxidative stress enhancement. Therefore, blockade of AT1R may have beneficial effects in hypertensive patients who have developed ARF.  相似文献   

18.
Ischemia-reperfusion-induced (I/R) renal damage is a pathogenic process that starts with ischemia, then progresses through oxidative stress and inflammation. Tocilizumab (TCZ), a recombinant human monoclonal antibody produced against the IL-6 receptor, will be tested against renal I/R injury. TCZ is known to lower the levels of proinflammatory cytokines and oxidant mediators while raising the amounts of antioxidant molecules. Our purpose is to evaluate the biochemical and histological effects of TCZ against I/R-induced oxido-inflammatory kidney damage and dysfunction in rats. Animals were divided into 3 groups as renal I/R (RIR), I/R+ TCZ (IRT), and healthy group (HG). TCZ was administered at a dose of 8 mg/kg to the IRT group (n=6) of the animals, and distilled water as a solvent was administered intraperitoneally (ip) to the RIR (n=6) and HG (n=6) groups. Then, two hours of ischemia and six hours of reperfusion were applied to the left kidneys of IRT and RIR animals. TCZ significantly inhibited the increase in the levels of malondialdehyde (MDA), nuclear kappa B (NF-κB), tumour necrosis factor alpha (TNF-α), interleukin 1-β (IL-1β), IL-6, creatinine (Cr) and blood urea nitrogen (BUN) and decrease in total glutathione (tGSH) with I/R in renal tissue. TCZ also attenuated severe histopathological damage due to I/R in renal tissue. TCZ protected renal tissue from I/R-induced oxidative and inflammatory damage. These results indicate that TCZ may be useful in the treatment of renal I/R injury.  相似文献   

19.
Localized tumor necrosis factor-alpha (TNFalpha) elevation has diverse effects in brain injury often attributed to signaling via TNFp55 or TNFp75 receptors. Both dentate granule cells and CA pyramidal cells express TNF receptors (TNFR) at low levels in a punctate pattern. Using a model to induce selective death of dentate granule cells (trimethyltin; 2 mg/kg, i.p.), neuronal apoptosis [terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ end labeling, active caspase 3 (AC3)] was accompanied by amoeboid microglia and elevated TNFalpha mRNA levels. TNFp55R (55 kDa type-1 TNFR) and TNFp75R (75 kDa type-2 TNFR) immunoreactivity in AC3(+) neurons displayed a pattern suggestive of receptor internalization and a temporal sequence of expression of TNFp55R followed by TNFp75R associated with the progression of apoptosis. A distinct ramified microglia response occurred around CA1 neurons and healthy dentate neurons that displayed an increase in the normal punctate pattern of TNFRs. Neuronal damage was decreased with i.c.v. injection of TNFalpha antibody and in TNFp55R-/-p75R-/- mice that showed higher constitutive mRNA levels for interleukin (IL-1alpha), macrophage inflammatory protein 1-alpha (MIP-1alpha), TNFalpha, transforming growth factor beta1, Fas, and TNFRSF6-assoicated via death domain (FADD). TNFp75R-/- mice showed exacerbated injury and elevated mRNA levels for IL-1alpha, MIP-1alpha, and TNFalpha. In TNFp55R-/- mice, constitutive mRNA levels for TNFalpha, IL-6, caspase 8, FADD, and Fas-associated phosphatase were higher; IL-1alpha, MIP-1alpha, and transforming growth factor beta1 lower. The mice displayed exacerbated neuronal death, delayed microglia response, increased FADD and TNFp75R mRNA levels, and co-expression of TNFp75R in AC3(+) neurons. The data demonstrate TNFR-mediated apoptotic death of dentate granule neurons utilizing both TNFRs and suggest a TNFp75R-mediated apoptosis in the absence of normal TNFp55R activity.  相似文献   

20.
Inflammation and renal tubular injury are major features of acute kidney injury (AKI). Many cytokines and chemokines are released from injured tubular cells and acts as proinflammatory mediators. However, the role of IL-19 in the pathogenesis of AKI is not defined yet. In bilateral renal ischemia/reperfusion injury (IRI)-induced and HgCl2-induced AKI animal models, real-time quantitative (RTQ)-PCR showed that the kidneys, livers, and lungs of AKI mice expressed significantly higher IL-19 and its receptors than did sham control mice. Immunohistochemical staining showed that IL-19 and its receptors were strongly stained in the kidney, liver, and lung tissue of AKI mice. In vitro, IL-19 upregulated MCP-1, TGF-β1, and IL-19, and induced mitochondria-dependent apoptosis in murine renal tubular epithelial M-1 cells. IL-19 upregulated TNF-α and IL-10 in cultured HepG2 cells, and it increased IL-1β and TNF-α expression in cultured A549 cells. In vivo, after renal IRI or a nephrotoxic dose of HgCl2 treatment, IL-20R1-deficient mice (the deficiency blocks IL-19 signaling) showed lower levels of blood urea nitrogen (BUN) in serum and less tubular damage than did wild-type mice. Therefore, we conclude that IL-19 mediates kidney, liver, and lung tissue damage in murine AKI and that blocking IL-19 signaling may provide a potent therapeutic strategy for treating AKI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号