首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
Yang JR  Lin YC  Huang YP  Su CH  Lo J  Ho YL  Yao CY  Hsu LC  Wu HS  Liu MT 《PloS one》2011,6(3):e18177
A dramatic increase in the frequency of the H275Y mutation in the neuraminidase (NA), conferring resistance to oseltamivir, has been detected in human seasonal influenza A/H1N1 viruses since the influenza season of 2007-2008. The resistant viruses emerged in the ratio of 14.3% and quickly reached 100% in Taiwan from September to December 2008. To explore the mechanisms responsible for emergence and spread of the resistant viruses, we analyzed the complete genome sequences of 25 viruses collected during 2005-2009 in Taiwan, which were chosen from various clade viruses, 1, 2A, 2B-1, 2B-2, 2C-1 and 2C-2 by the classification of hemagglutinin (HA) sequences. Our data revealed that the dominant variant, clade 2B-1, in the 2007-2008 influenza emerged through an intra-subtype 4+4 reassortment between clade 1 and 2 viruses. The dominant variant acquired additional substitutions, including A206T in HA, H275Y and D354G in NA, L30R and H41P in PB1-F2, and V411I and P453S in basic polymerase 2 (PB2) proteins and subsequently caused the 2008-2009 influenza epidemic in Taiwan, accompanying the widespread oseltamivir-resistant viruses. We also characterized another 3+5 reassortant virus which became double resistant to oseltamivir and amantadine. Comparison of oseltamivir-resistant influenza A/H1N1 viruses belonging to various clades in our study highlighted that both reassortment and mutations were associated with emergence and spread of these viruses and the specific mutation, H275Y, conferring to antiviral resistance, was acquired in a hitch-hiking mechanism during the viral evolutionary processes.  相似文献   

2.
Understanding the evolution of influenza A viruses in humans is important for surveillance and vaccine strain selection. We performed a phylogenetic analysis of 156 complete genomes of human H3N2 influenza A viruses collected between 1999 and 2004 from New York State, United States, and observed multiple co-circulating clades with different population frequencies. Strikingly, phylogenies inferred for individual gene segments revealed that multiple reassortment events had occurred among these clades, such that one clade of H3N2 viruses present at least since 2000 had provided the hemagglutinin gene for all those H3N2 viruses sampled after the 2002–2003 influenza season. This reassortment event was the likely progenitor of the antigenically variant influenza strains that caused the A/Fujian/411/2002-like epidemic of the 2003–2004 influenza season. However, despite sharing the same hemagglutinin, these phylogenetically distinct lineages of viruses continue to co-circulate in the same population. These data, derived from the first large-scale analysis of H3N2 viruses, convincingly demonstrate that multiple lineages can co-circulate, persist, and reassort in epidemiologically significant ways, and underscore the importance of genomic analyses for future influenza surveillance.  相似文献   

3.
Despite great efforts to control the infection of poultry with H5N1 viruses, these pathogens continue to evolve and spread in nature, threatening public health. Elucidating the characteristics of H5N1 avian influenza virus will benefit disease control and pandemic preparation. Here, we sequenced the genomes of 15 H5N1 avian influenza viruses isolated in Vietnam in 2006 and 2007 and performed phylogenetic analyses to compare these sequences with those of other viruses available in the public databases. Molecular characterization of the H5N1 viruses revealed that seven genetically distinct clades of H5N1 viruses have appeared in Vietnam. Clade 2.3.4 viruses existed in Vietnam as early as 2005. Fifteen viruses isolated during 2006 and 2007 belonged to clade 1 and clade 2.3.4, and were divided into five genotypes. Reassortants between the clade 1 and clade 2.3.4 viruses were detected in both North and South Vietnam. We also assessed the replication and pathogenicity of these viruses in mice and found that these isolates replicated efficiently and exhibited distinct virulence in mice. Our results provide important information regarding the diversity of H5N1 viruses in nature.  相似文献   

4.

Background

The aim of this study was to analyse the genetic patterns of Hemagglutinin (HA) genes of influenza A strains circulating on Corsica Island during the 2006–2009 epidemic seasons and the 2009–2010 pandemic season.

Methods

Nasopharyngeal samples from 371 patients with influenza-like illness (ILI) were collected by General Practitioners (GPs) of the Sentinelles Network through a randomised selection routine.

Results

Phylogenetic analysis of HA revealed that A/H3N2 strains circulating on Corsica were closely related to the WHO recommended vaccine strains in each analyzed season (2006–2007 to 2008–2009). Seasonal Corsican influenza A/H1N1 isolated during the 2007–2008 season had drifted towards the A/Brisbane/59/2007 lineage, the A/H1N1 vaccine strain for the 2008–2009 season. The A/H1N1 2009 (A/H1N1pdm) strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E.The percentages of the perfect match vaccine efficacy, estimated by using the p epitope model, against influenza viruses circulating on Corsica Island varied substantially across the four seasons analyzed, and tend to be highest for A/H1N1 compared with A/H3N2 vaccines, suggesting that cross-immunity seems to be stronger for the H1 HA gene.

Conclusion

The molecular analysis of the HA gene of influenza viruses that circulated on Corsica Island between 2006–2010 showed for each season the presence of a dominant lineage characterized by at least one fixed mutation. The A/H3N2 and A/H1N1pdm isolates were characterized by multiples fixation at antigenic sites. The fixation of specific mutations at each outbreak could be explained by the combination of a neutral phenomenon and a founder effect, favoring the presence of a dominant lineage in a closed environment such as Corsica Island.  相似文献   

5.
Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.  相似文献   

6.
The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized.  相似文献   

7.
The emergence and rapid global spread of the swine-origin H1N1/09 pandemic influenza A virus in humans underscores the importance of swine populations as reservoirs for genetically diverse influenza viruses with the potential to infect humans. However, despite their significance for animal and human health, relatively little is known about the phylogeography of swine influenza viruses in the United States. This study utilizes an expansive data set of hemagglutinin (HA1) sequences (n = 1516) from swine influenza viruses collected in North America during the period 2003-2010. With these data we investigate the spatial dissemination of a novel influenza virus of the H1 subtype that was introduced into the North American swine population via two separate human-to-swine transmission events around 2003. Bayesian phylogeographic analysis reveals that the spatial dissemination of this influenza virus in the US swine population follows long-distance swine movements from the Southern US to the Midwest, a corn-rich commercial center that imports millions of swine annually. Hence, multiple genetically diverse influenza viruses are introduced and co-circulate in the Midwest, providing the opportunity for genomic reassortment. Overall, the Midwest serves primarily as an ecological sink for swine influenza in the US, with sources of virus genetic diversity instead located in the Southeast (mainly North Carolina) and South-central (mainly Oklahoma) regions. Understanding the importance of long-distance pig transportation in the evolution and spatial dissemination of the influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens.  相似文献   

8.
A/H1N1流感—世界关注的焦点   总被引:1,自引:0,他引:1  
2009年4月,A/H1N1流感在墨西哥和美国暴发。随后,疫情迅速蔓延到美洲、欧洲、亚洲多个国家。A/H1N1流感病毒是一种以前在人或动物身上从未观测到的新病毒。遗传进化和抗原特性分析表明该病毒和猪流感病毒密切相关,与人类的季节性流感病毒有明显区别。但是流行病学信息表明A/H1N1流感病毒只攻击人类,并在人与人之间传播,尚未发现动物向人类传播的情况。本文从A/H1N1流感病毒的生物学特性、临床特征、公共卫生意义等方面全面阐述了A/H1N1流感的最新研究进展,为正确认识和科学防控A/H1N1流感提供参考。  相似文献   

9.
Understanding the evolutionary dynamics of influenza A virus is central to its surveillance and control. While immune-driven antigenic drift is a key determinant of viral evolution across epidemic seasons, the evolutionary processes shaping influenza virus diversity within seasons are less clear. Here we show with a phylogenetic analysis of 413 complete genomes of human H3N2 influenza A viruses collected between 1997 and 2005 from New York State, United States, that genetic diversity is both abundant and largely generated through the seasonal importation of multiple divergent clades of the same subtype. These clades cocirculated within New York State, allowing frequent reassortment and generating genome-wide diversity. However, relatively low levels of positive selection and genetic diversity were observed at amino acid sites considered important in antigenic drift. These results indicate that adaptive evolution occurs only sporadically in influenza A virus; rather, the stochastic processes of viral migration and clade reassortment play a vital role in shaping short-term evolutionary dynamics. Thus, predicting future patterns of influenza virus evolution for vaccine strain selection is inherently complex and requires intensive surveillance, whole-genome sequencing, and phenotypic analysis.  相似文献   

10.
Virus gene sequencing and phylogenetics can be used to study the epidemiological dynamics of rapidly evolving viruses. With complete genome data, it becomes possible to identify and trace individual transmission chains of viruses such as influenza virus during the course of an epidemic. Here we sequenced 153 pandemic influenza H1N1/09 virus genomes from United Kingdom isolates from the first (127 isolates) and second (26 isolates) waves of the 2009 pandemic and used their sequences, dates of isolation, and geographical locations to infer the genetic epidemiology of the epidemic in the United Kingdom. We demonstrate that the epidemic in the United Kingdom was composed of many cocirculating lineages, among which at least 13 were exclusively or predominantly United Kingdom clusters. The estimated divergence times of two of the clusters predate the detection of pandemic H1N1/09 virus in the United Kingdom, suggesting that the pandemic H1N1/09 virus was already circulating in the United Kingdom before the first clinical case. Crucially, three clusters contain isolates from the second wave of infections in the United Kingdom, two of which represent chains of transmission that appear to have persisted within the United Kingdom between the first and second waves. This demonstrates that whole-genome analysis can track in fine detail the behavior of individual influenza virus lineages during the course of a single epidemic or pandemic.  相似文献   

11.

Background

Increasing evidence suggests that influenza reassortment not only contributes to the emergence of new human pandemics but also plays an important role in seasonal influenza epidemics, disease severity, evolution, and vaccine efficacy. We studied this process within 2091 H3N2 full genomes utilizing a combination of the latest reassortment detection tools and more conventional phylogenetic analyses.

Results

We found that the amount of H3N2 intra-subtype reassortment depended on the number of sampled genomes, occurred with a steady frequency of 3.35%, and was not affected by the geographical origins, evolutionary patterns, or previous reassortment history of the virus. We identified both single reassortant genomes and reassortant clades, each clade representing one reassortment event followed by successful spread of the reassorted variant in the human population. It was this spread that was mainly responsible for the observed high presence of H3N2 intra-subtype reassortant genomes. The successfully spread variants were generally sampled within one year of their formation, highlighting the risk of their rapid spread but also presenting an opportunity for their rapid detection. Simultaneous spread of several different reassortant lineages was observed, and despite their limited average lifetime, second and third generation reassortment was detected, as well as reassortment between viruses belonging to different vaccine-associated clades, likely displaying differing antigenic properties. Some of the spreading reassortants remained confined to certain geographical regions, while others, sharing common properties in amino acid positions of the HA, NA, and PB2 segments, were found throughout the world.

Conclusions

Detailed surveillance of seasonal influenza reassortment patterns and variant properties may provide unique information needed for prediction of spread and construction of future influenza vaccines.
  相似文献   

12.
Ten influenza virus isolates were obtained from infected pigs from different places in Shandong province showing clinical symptoms from October 2002 to January 2003. All 10 isolates were identified in China's National Influenza Research Center as influenza A virus of H9N2 subtype. The complete genome of one isolate, designated A/Swine/Shandong/1/2003(H9N2), was sequenced and compared with sequences available in GenBank. The results of analyses indicated that the sequence of A/Swine/Shandong/1/2003(H9N2) was similar to those of several chicken influenza viruses and duck influenza viruses recently prevalent in South China. According to phylogenetic analysis of the complete gene sequences, A/Swine/Shandong/1/2003(H9N2) possibly originated from the reassortment of chicken influenza viruses and duck influenza viruses. It was found that the amino acid sequence at the HA cleavage site in Sw/SD/1/2003 is R-S-L-R-G, differing clearly from that of other H9N2 subtype isolates of swine influenza and avian influenza, which is R-S-S-R-G.  相似文献   

13.

Background

In early 2009, a novel influenza A(H1N1) virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.

Methods/Results

The first case of human infection with A(H1N1)pdm09 in Pakistan was detected on 18th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31st August 2010). The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.

Conclusions

Influenza A(H1N1)pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.  相似文献   

14.
Novel H3N2 influenza viruses (H3N2v) containing seven genome segments from swine lineage triple-reassortant H3N2 viruses and a 2009 pandemic H1N1 (H1N1pdm09) matrix protein segment (pM) were isolated from 12 humans in the United States between August and December 2011. To understand the evolution of these novel H3N2 viruses in swine and humans, we undertook a phylogenetic analysis of 674 M sequences and 388 HA and NA sequences from influenza viruses isolated from North American swine during 2009-2011, as well as HA, NA, and M sequences from eight H3N2v viruses isolated from humans. We identified 34 swine influenza viruses (termed rH3N2p) with the same combination of H3, N2, and pM segments as the H3N2v viruses isolated from humans. Notably, these rH3N2p viruses were generated in swine via reassortment events between H3N2 viruses and the pM segment approximately 4 to 10 times since 2009. The pM segment has also reassorted with multiple distinct lineages of H1 virus, especially H1δ viruses. Importantly, the N2 segment of all H3N2v viruses isolated from humans is derived from a genetically distinct N2 lineage that has circulated in swine since being acquired by reassortment with seasonal human H3N2 viruses in 2001-2002, rather than from the N2 that is associated with the 1998 H3N2 swine lineage. The identification of this N2 variant may have implications for influenza vaccine design and the potential pandemic threat of H3N2v to human age groups with differing levels of prior exposure and immunity.  相似文献   

15.

Background

The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period.

Methods and Findings

Regional outpatient surveillance data on influenza-like illness (ILI) and virologic surveillance data were combined to define a weekly proxy for the incidence of each strain in the United States. All strains exhibited a negative association between their cumulative incidence proxy (CIP) for the whole season (from calendar week 40 of each year to calendar week 20 of the next year) and the CIP of the other two strains (the complementary CIP) from the start of the season up to calendar week 2 (or 3, 4, or 5) of the next year. We introduce a method to predict a particular strain''s CIP for the whole season by following the incidence of each strain from the start of the season until either the CIP of the chosen strain or its complementary CIP exceed certain thresholds. The method yielded accurate predictions, which generally occurred within a few weeks of the peak of incidence of the chosen strain, sometimes after that peak. For the largest seasons in the data, which were dominated by A/H3N2, prediction of A/H3N2 incidence always occurred at least several weeks in advance of the peak.

Conclusion

Early circulation of one influenza strain is associated with a reduced total incidence of the other strains, consistent with the presence of interference between subtypes. Routine ILI and virologic surveillance data can be combined using this new method to predict the relative size of each influenza strain''s epidemic by following the change in incidence of a given strain in the context of the incidence of cocirculating strains. Please see later in the article for the Editors'' Summary  相似文献   

16.
The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.The recent emergence of swine-origin H1N1 influenza A virus (pandemic H1N1/09) in humans has heightened awareness of how the burden of morbidity and mortality due to influenza is associated with the appearance of new genetic variants (5) and of the genetic and epidemiological determinants of viral transmission (8). The emergence of pandemic H1N1/09 is also unprecedented in recorded history as it means that three antigenically distinct lineages of influenza A virus—pandemic H1N1/09 and the seasonal H1N1 and H3N2 viruses— currently cocirculate within human populations.Although the presence of multiple subtypes of influenza A virus may place an additional burden on public health resources, it also provides a unique opportunity to compare the patterns and dynamics of evolution in these viruses on a similar time scale. Indeed, one of the most interesting secondary effects of the current H1N1/09 pandemic has been an increased vigilance for cases of influenza-like illness and hence an intensified sampling of seasonal H1N1 and H3N2 viruses during the typical influenza “off-season” (i.e., spring-summer) in the northern hemisphere. Because the influenza season in the northern hemisphere generally runs from November through March, with a usual peak in January or February, influenza viruses sampled outside of this period are of special interest.The current model for the global spatiotemporal dynamics of influenza A virus is that the northern and southern hemispheres represent ecological “sinks” for this virus, with little ongoing viral transmission during the summer months (9). In contrast, more continual viral transmission occurs within the tropical “source” population (13) that is most likely centered on an intense transmission network in east and southeast Asia (10). However, the precise epidemiological and evolutionary reasons for this major geographic division, and for the seasonality of influenza A virus in general, remain uncertain (1, 4). Evidence for this “sink-source” ecological model is that viruses sampled from successive seasons in localities such as New York State do not usually form linked clusters on phylogenetic trees, indicating that they are not connected by direct transmission through the summer months (7). Similar conclusions can be drawn for the United States as a whole and point to multiple introductions of phylogenetically distinct lineages during the winter (6), followed by complex patterns of spatial diffusion (14). However, despite the growing epidemiological and phylogenetic data supporting this model, it is also evident that there is relatively little sequence data from seasonal influenza viruses that are sampled from April to October in the northern hemisphere. Hence, it is uncertain whether extended chains of transmission can occur during this time period, even though this may have an important bearing on our understanding of influenza seasonality.To address these issues, we examined the evolutionary behavior of seasonal H1N1 and H3N2 viruses as they cocirculated during a single time period—(late) April to June 2009—within a single locality (New York State). Not only are levels of influenza virus transmission in the northern hemisphere usually very low during this time period, but in this particular season the human host population was also experiencing the emerging epidemic of pandemic H1N1/09.  相似文献   

17.
In April 2009, a novel influenza A subtype H1N1 triple reassortant virus (novel H1N1 2009), composed of genes from swine, avian, and human influenza A viruses, emerged in humans in the United States and Mexico and spread person-to-person around the world to become the first influenza pandemic of the 21st century. The virus is believed to have emerged from a reassortment event involving a swine virus some time in the past 10 to 20 years, but pigs, pork, and pork products have not been involved with infection or spread of the virus to or among people. Because countries quickly implemented recently developed pandemic influenza plans, the disease was detected and reported and public health authorities instituted control measures in a timely fashion. But the news media's unfortunate and inappropriate naming of the disease as the "swine flu" led to a drop in the demand for pork and several countries banned pork imports from affected countries, resulting in serious negative economic impacts on the pork industry. With the continual circulation and interspecies transmission of human, swine, and avian influenza viruses in countries around the world, there are calls for strengthening influenza surveillance in pigs, birds, and other animals to aid in monitoring and assessing the risk of future pandemic virus emergence involving different species. We identify and discuss several lessons to be learned from pandemic H1N1 2009 from a One Health perspective, as stronger collaboration among human, animal, and environmental health sectors is necessary to more effectively prevent or detect and respond to influenza pandemics and thus improve human, animal, and environmental health and well-being.  相似文献   

18.
In this work, nineteen influenza A/H3N2 viruses isolated in Mexico between 2003 and 2012 were studied. Our findings show that different human A/H3N2 viral lineages co-circulate within a same season and can also persist locally in between different influenza seasons, increasing the chance for genetic reassortment events. A novel minor cluster was also identified, named here as Korea, that circulated worldwide during 2003. Frequently, phylogenetic characterization did not correlate with the determined antigenic identity, supporting the need for the use of molecular evolutionary tools additionally to antigenic data for the surveillance and characterization of viral diversity during each flu season. This work represents the first long-term molecular epidemiology study of influenza A/H3N2 viruses in Mexico based on the complete genomic sequences and contributes to the monitoring of evolutionary trends of A/H3N2 influenza viruses within North and Central America.  相似文献   

19.
As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or “mixing vessels”, and swine influenza virus surveillance in China should be given a high priority.  相似文献   

20.

Background

In April 2009, a novel triple-reassortant swine influenza A H1N1 virus (“A/H1N1pdm”; also known as SOIV) was detected and spread globally as the first influenza pandemic of the 21st century. Sequencing has since been conducted at an unprecedented rate globally in order to monitor the diversification of this emergent virus and to track mutations that may affect virus behavior.

Methodology/Principal Findings

By Sanger sequencing, we determined consensus whole-genome sequences for A/H1N1pdm viruses sampled nationwide in Canada over 33 weeks during the 2009 first and second pandemic waves. A total of 235 virus genomes sampled from unique subjects were analyzed, providing insight into the temporal and spatial trajectory of A/H1N1pdm lineages within Canada. Three clades (2, 3, and 7) were identifiable within the first two weeks of A/H1N1pdm appearance, with clades 5 and 6 appearing thereafter; further diversification was not apparent. Only two viral sites displayed evidence of adaptive evolution, located in hemagglutinin (HA) corresponding to D222 in the HA receptor-binding site, and to E374 at HA2-subunit position 47. Among the Canadian sampled viruses, we observed notable genetic diversity (1.47×10−3 amino acid substitutions per site) in the gene encoding PB1, particularly within the viral genomic RNA (vRNA)-binding domain (residues 493–757). This genome data set supports the conclusion that A/H1N1pdm is evolving but not excessively relative to other H1N1 influenza A viruses. Entropy analysis was used to investigate whether any mutated A/H1N1pdm protein residues were associated with infection severity; however no virus genotypes were observed to trend with infection severity. One virus that harboured heterozygote coding mutations, including PB2 D567D/G, was attributed to a severe and potentially mixed infection; yet the functional significance of this PB2 mutation remains unknown.

Conclusions/Significance

These findings contribute to enhanced understanding of Influenza A/H1N1pdm viral dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号