首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.  相似文献   

2.
Sulpha drugs act as competitive inhibitors of p-amino benzoic acid, an intermediate in the de novo folate pathway. Dihydropteroate synthase condenses sulpha drugs into sulpha-dihydropteroate (sulpha-DHP), which competes with dihydrofolate, the dihydrofolate reductase (DHFR) substrate. This designates DHFR as a possible target of sulpha-DHP. We suggest here that Plasmodium vivax DHFR is indeed the in vivo target of sulpha drugs. The wild-type DHFR expressed in Saccharomyces cerevisiae leads to cell growth inhibition, while sensitivity to the drug is exacerbated in the mutants. Contrary to what is observed with sulphanilamide, methotrexate is less effective on P. vivax-DHFR mutants than on wild-type mutant.  相似文献   

3.
We overexpressed and purified from Escherichia coli the dihydrofolate reductase (DHFR) of the gammaherpesviruses human herpesvirus 8 (HHV-8), herpesvirus saimiri (HVS), and rhesus rhadinovirus (RRV). All three enzymes proved catalytically active. The K(m) value of HHV-8 DHFR for dihydrofolate (DHF) was 2.02+/-0.44 microM, that of HVS DHFR was 4.31+/-0.56 microM, and that of RRV DHFR is 7.09+/-0.11 microM. These values are approximately 5-15-fold higher than the K(m) value reported for the human DHFR. The K(m) value of HHV-8 DHFR for NADPH was 1.31+/-0.23 microM, that of HVS DHFR was 3.78+/-0.61 microM, and that of RRV DHFR was 7.47+/-0.59 microM. These values are similar or slightly higher than the corresponding K(m) value of the human enzyme. Methotrexate, aminopterin, trimethoprim, pyrimethamine, and N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (PT523), all well-known folate antagonists, inhibited the DHFR activity of the three gammaherpesviruses competitively with respect to DHF but proved markedly less inhibitory to the viral than towards the human enzyme.  相似文献   

4.
The kinetic characteristics of a purified insect dihydrofolate reductase (DHFR) have been described. The Km values for the substrate dihydrofolate and the cofactor NADPH have been estimated by primary and secondary Hanes plots to be 0.3 and 5.2 microM, respectively. Drosophila melanogaster DHFR can use folate and NADH at acidic pH values, but at a much lower rate than the preferred substrate and cofactor. Folic acid is a partial competitive inhibitor of Drosophila DHFR (Ki = 0.4 microM) and trimethoprim is a complete competitive inhibitor (Ki = 5.4 microM). Methotrexate binds less tightly to the Drosophila enzyme than to many other DHFRs (Kd = 0.9 nM). Drosophila DHFR is inhibited by KCl and organic mercurials and is slightly activated by urea. These data indicate that Drosophila DHFR has some characteristics which are typical of vertebrate DHFRs and others which are typical of prokaryotic DHFRs. The study of this enzyme, therefore, should aid in the definition of the structural features that are responsible for the kinetic characteristics in different DHFRs.  相似文献   

5.
R67 dihydrofolate reductase (DHFR) is a type II DHFR produced by bacteria as a resistance mechanism to the increased clinical use of the antibacterial drug trimethoprim. Type II DHFRs are not homologous in either sequence or structure with chromosomal DHFRs. The type II enzymes contain four identical subunits which form a homotetramer containing a single active site pore accessible from either end. Although the crystal structure of the complex of R67 DHFR with folate has been reported [Narayana et al. (1995) Nat. Struct. Biol. 2, 1018], the nature of the ternary complex which must form with substrate and cofactor is unclear. We have performed transferred NOE and interligand NOE (ILOE) studies to analyze the ternary complexes formed from NADP(+) and folate in order to probe the structure of the ternary complex. Consistent with previous studies of the binary complex formed from another type II DHFR, the ribonicotinamide bond of NADP(+) was found to adopt a syn conformation, while the adenosine moiety adopts an anti conformation. Large ILOE peaks connecting NADP(+) H4 and H5 with folate H9 protons are observed, while the absence of a large ILOE connecting NADP(+) H4 and H5 with folate H7 indicates that the relative orientation of the two ligands differs significantly from the orientation in the chromosomal enzyme. To obtain more detailed insight, we prepared and studied the folate analogue 2-deamino-2-methyl-5,8-dideazafolate (DMDDF) which contains additional protons in order to provide additional NOEs. For this analogue, the exchange characteristics of the corresponding ternary complex were considerably poorer, and it was necessary to utilize higher enzyme concentrations and higher temperature in order to obtain ILOE information. The results support a structure in which the NADP(+) and folate/DMDDF molecules extend in opposite directions parallel to the long axis of the pore, with the nicotinamide and pterin ring systems approximately stacked at the center. Such a structure leads to a ternary complex which is in many respects similar to the gas-phase theoretical calculations of the dihydrofolate-NADPH transition state by Andres et al. [(1996) Bioorg. Chem. 24, 10-18]. Analogous NMR studies performed on folate, DMDDF, and R67 DHFR indicate formation of a ternary complex in which two symmetry-related binding sites are occupied by folate and DMDDF.  相似文献   

6.
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate (THF). THF is needed for the action of folate-dependent enzymes and is thus essential for DNA synthesis and methylation. The importance of this reaction is demonstrated by the effectiveness of antifolate medications used to treat cancer by inhibiting DHFR, thereby depleting THF and slowing DNA synthesis and cell proliferation. Due to the pivotal role that DHFR plays in folate metabolism and cancer treatment, changes in the level of DHFR expression can affect susceptibility to a variety of diseases dependent on folate status such as spina bifida and cancer. Likewise, variability in DHFR expression can affect sensitivity to anti-cancer drugs such as the folate antagonist methotrexate. Alterations in DHFR expression can be due to polymorphisms in the DHFR gene. Several variations have recently been described in DHFR, including promoter polymorphisms, the 19-bp deletion allele and variations in 3'UTR. These polymorphisms seem to be functional, affecting mRNA levels through various interesting mechanisms, including regulation through RNA interference. Several groups have assessed the association of these polymorphisms with folate levels, risk of cancer and spina bifida as well as the outcome of diseases treated with MTX. The latter may lead to different treatment schedules, improving treatment efficacy and/or allowing for a reduction in drug side effects. This review will summarize present knowledge regarding the predictive potential of DHFR polymorphisms in disease and treatment.  相似文献   

7.
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate and is essential for the synthesis of thymidylate, purines and several amino acids. Inhibition of the enzyme's activity leads to arrest of DNA synthesis and cell death. The enzyme has been studied extensively as a drug target for bacterial, protozoal and fungal infections, and also for neoplastic and autoimmune diseases. Here, we report the crystal structure of dihydrofolate reductase from Mycobacterium tuberculosis, a human pathogen responsible for the death of millions of human beings per year. Three crystal structures of ternary complexes of M. tuberculosis DHFR with NADP and different inhibitors have been determined, as well as the binary complex with NADP, with resolutions ranging from 1.7 to 2.0 A. The three DHFR inhibitors are the anticancer drug methotrexate, the antimicrobial trimethoprim and Br-WR99210, an analogue of the antimalarial agent WR99210. Structural comparison of these complexes with human dihydrofolate reductase indicates that the overall protein folds are similar, despite only 26 % sequence identity, but that the environments of both NADP and of the inhibitors contain interesting differences between the enzymes from host and pathogen. Specifically, residues Ala101 and Leu102 near the N6 of NADP are distinctly more hydrophobic in the M. tuberculosis than in the human enzyme. Another striking difference occurs in a region near atoms N1 and N8 of methotrexate, which is also near atom N1 of trimethoprim, and near the N1 and two methyl groups of Br-WR99210. A glycerol molecule binds here in a pocket of the M. tuberculosis DHFR:MTX complex, while this pocket is essentially filled with hydrophobic side-chains in the human enzyme. These differences between the enzymes from pathogen and host provide opportunities for designing new selective inhibitors of M. tuberculosis DHFR.  相似文献   

8.
Dismutation of dihydrofolate by dihydrofolate reductase   总被引:1,自引:0,他引:1  
R L Blakley  L Cocco 《Biochemistry》1984,23(11):2377-2383
Degradation of 7,8-dihydrofolate (H2folate) in the presence of dihydrofolate reductase (DHFR) has been shown due not to an oxygenase activity of the reductase as previously reported but to dismutation of H2folate to folate and 5,6,7,8-tetrahydrofolate (H4folate). The reaction can be followed spectrophotometrically or by analysis of the reaction mixture by high-performance liquid chromatography (HPLC). The products have also been isolated and characterized. Oxygen uptake during the reaction is much less than stoichiometric with H2folate disappearance and is attributed to autoxidation of the H4folate formed. The dismutation activity is a property of highly purified Streptococcus faecium DHFR isoenzyme 2 (but not isoenzyme 1) and of Lactobacillus casei DHFR, but not of bovine liver DHFR. The activity is dependent on tightly bound NADP+ and/or NADPH. Removal of the nucleotide results in loss of dismutation activity, which is restored by adding NADP+ or NADPH. Maximum activity is obtained when approximately 1 mol equiv of nucleotide is added per mol of DHFR. It is proposed that in the dismutation reaction bound NADP(H) is alternately reduced and oxidized by incoming molecules of H2folate with release of folate and H4folate, respectively. The relatively slow rate of folate formation presumably limits the rate of the overall reaction. The equilibrium constant for the dismutation reaction is 19.4 +/- 7.4 at 22 degrees C and pH 7.0. Calculation of standard oxidation-reduction potentials at pH 7 gave values of -0.230 V for the H2folate/H4 folate pair and -0.268 V for the folate/H2folate pair. The mechanism by which NADP+ is retained by the enzyme from some sources during purification procedures is unclear.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Dihydrofolate reductase as a therapeutic target   总被引:9,自引:0,他引:9  
The folate antagonists are an important class of therapeutic compounds, as evidenced by their use as antiinfective, antineoplastic, and antiinflammatory drugs. Thus far, all of the clinically useful drugs of this class have been inhibitors of dihydrofolate reductase (DHFR), a key enzyme in the synthesis of thymidylate, and therefore, of DNA. The basis of the antiinfective selectivity of these compounds is clear; the antifolates trimethoprim and pyrimethamine are potent inhibitors of bacterial and protozoal DHFRs, respectively, but are only weak inhibitors of mammalian DHFRs. These species-selective agents apparently exploit the differences in the active site regions of the parasite and host enzymes. Methotrexate is the DHFR inhibitor used most often in a clinical setting as an anticancer drug and as an antiinflammatory and immunosuppressive agent. Considerable progress has been made recently in understanding the biochemical basis for the selectivity of this drug and the biochemical mechanism (or mechanisms) responsible for the development of resistance to treatment with the drug. This understanding has led to a new generation of DHFR inhibitors that are now in clinical trials.  相似文献   

10.
The introduction and wide use of antibacterial drugs has resulted in the emergence of resistant organisms. DfrB dihydrofolate reductase (DHFR) is a bacterial enzyme that is uniquely associated with mobile gene cassettes within integrons, and confers resistance to the drug trimethoprim. This enzyme has intrigued microbiologists since it was discovered more than thirty years ago because of its simple structure, enzymatic inefficiency and its virtual insensitivity to trimethoprim. Here, for the first time, a comprehensive discussion of genetic, evolutionary, structural and functional studies of this enzyme is presented together. This information supports the ideas that DfrB DHFR is a poorly adapted catalyst and has recently been recruited to perform a novel enzymatic activity in response to selective pressure.  相似文献   

11.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a bacterial pathogen that claims roughly 1.4 million lives every year. Current drug regimens are inefficient at clearing infection, requiring at least 6 months of chemotherapy, and resistance to existing agents is rising. There is an urgent need for new drugs that are more effective and faster acting. The folate pathway has been successfully targeted in other pathogens and diseases, but has not yielded a lead drug against tuberculosis. We developed a high-throughput screening assay against Mtb dihydrofolate reductase (DHFR), a critical enzyme in the folate pathway, and screened a library consisting of 32,000 synthetic and natural product-derived compounds. One potent inhibitor containing a quinazoline ring was identified. This compound was active against the wild-type laboratory strain H37Rv (MIC(99)?=?207 μM). In addition, an Mtb strain with artificially lowered DHFR levels showed increased sensitivity to this compound (MIC(99)?=?70.7 μM), supporting that the inhibition was target-specific. Our results demonstrate the potential to identify Mtb DHFR inhibitors with activity against whole cells, and indicate the power of using a recombinant strain of Mtb expressing lower levels of DHFR to facilitate the discovery of antimycobacterial agents. With these new tools, we highlight the folate pathway as a potential target for new drugs to combat the tuberculosis epidemic.  相似文献   

12.
R67 dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. This enzyme is a homotetramer possessing 222 symmetry, and a single active site pore traverses the length of the protein. A promiscuous binding surface can accommodate either DHF or NADPH, thus two nonproductive complexes can form (2NADPH or 2DHF) as well as a productive complex (NADPH.DHF). The role of water in binding was monitored using a number of different osmolytes. From isothermal titration calorimetry (ITC) studies, binding of NADPH is accompanied by the net release of 38 water molecules. In contrast, from both steady state kinetics and ITC studies, binding of DHF is accompanied by the net uptake of water. Although different osmolytes have similar effects on NADPH binding, variable results are observed when DHF binding is probed. Sensitivity to water activity can also be probed by an in vivo selection using the antibacterial drug, trimethoprim, where the water content of the media is decreased by increasing concentrations of sorbitol. The ability of wild type and mutant clones of R67 DHFR to allow host Escherichia coli to grow in the presence of trimethoprim plus added sorbitol parallels the catalytic efficiency of the DHFR clones, indicating water content strongly correlates with the in vivo function of R67 DHFR.  相似文献   

13.
Iclaprim, a new selective dihydrofolate inhibitor was synthesized based on rational drug design. Iclaprim's interaction with a resistant Staphylococcus aureus dihydrofolate reductase (DHFR) is outlined in comparison to trimethoprim (TMP). This compound is active against methicillin, TMP and vancomycin resistant strains. Arpida Ltd. is developing Iclaprim for serious hospital infections from Gram-positive pathogens and respiratory tract infections.  相似文献   

14.
We developed a method to determine dihydrofolate reductase (DHFR) activity at pH 7.4 (37 degrees C) by monitoring its product, tetrahydrofolate (H(4)folate), using HPLC with electrochemical detection. After the assay mixture was deproteinized by 0.5 M perchloric acid, the H(4)folate concentration was measured. Using sodium ascorbate at 20 mM, H(4)folate was stable in our assay system. The enzyme activity was also stable. The detection limit of this method was less than 1 nM of H(4)folate in the enzyme assay system, which was 1/100 lower than those for the NADPH-spectrophotometric assay, which is commonly used for analysis of DHFR activity. This value of 1 nM allowed us to control the conversion from dihydrofolate (H(2)folate) to H(4)folate less than 10% of initial substrate concentrations during assay, when we used a concentration around K(m) values reported for DHFR from various sources. The rate of reduction showed a linearity at concentrations around the K(m). The reduction rate must be evaluated exactly around the K(m), in order to obtain an accurate profile of Michaelis-Menten kinetics. This assay method has a sensitivity high enough to determine the reduction rate at H(2)folate concentrations around K(m). In addition, the assay procedure is very simple. Therefore, our method may be useful for studying DHFR.  相似文献   

15.
S Mai  A Jalava 《Nucleic acids research》1994,22(12):2264-2273
The dihydrofolate reductase is a key enzyme of the folate metabolism which supplies the cell with dTTPs for DNA synthesis. Using cellular extracts, we demonstrate the formation of c-Myc/Max heterodimers at the dihydrofolate reductase (DHFR) 5' flanking CANNTG (E-box) motifs. The presence of these complexes correlates with c-Myc levels and active cellular proliferation.  相似文献   

16.
The 20S proteasome is responsible for the degradation of protein substrates implicated in the onset and progression of neurodegenerative disorders, such as alpha-synuclein and tau protein. Here we show that the 20S proteasome isolated from bovine brain directly hydrolyzes, in vitro, the dihydrofolate reductase (DHFR), demonstrated to be involved in the pathogenesis of neurodegenerative diseases. Furthermore, the DHFR susceptibility to proteolysis is enhanced by oxidative conditions induced by peroxynitrite, mimicking the oxidative environment typical of these disorders. The results obtained suggest that the folate metabolism may be impaired by an increased degradation of DHFR, mediated by the 20S proteasome.  相似文献   

17.
L J Reece  R Nichols  R C Ogden  E E Howell 《Biochemistry》1991,30(45):10895-10904
R67 dihydrofolate reductase (DHFR) is a novel protein that provides clinical resistance to the antibacterial drug trimethoprim. The crystal structure of a dimeric form of R67 DHFR indicates the first 16 amino acids are disordered [Matthews et al. (1986) Biochemistry 25, 4194-4204]. To investigate whether these amino acids are necessary for protein function, the first 16 N-terminal residues have been cleaved off by chymotrypsin. The truncated protein is fully active with kcat = 1.3 s-1, Km(NADPH) = 3.0 microM, and Km(dihydrofolate) = 5.8 microM. This result suggests the functional core of the protein resides in the beta-barrel structure defined by residues 27-78. To study this protein further, synthetic genes coding for full-length and truncated R67 DHFRs were constructed. Surprisingly, the gene coding for truncated R67 DHFR does not produce protein in vivo or confer trimethoprim resistance upon Escherichia coli. Therefore, the relative stabilities of native and truncated R67 DHFR were investigated by equilibrium unfolding studies. Unfolding of dimeric native R67 DHFR is protein concentration dependent and can be described by a two-state model involving native dimer and unfolded monomer. Using absorbance, fluorescence, and circular dichroism techniques, an average delta GH2O of 13.9 kcal mol-1 is found for native R67 DHFR. In contrast, an average delta GH2O of 11.3 kcal mol-1 is observed for truncated R67 DHFR. These results indicate native R67 DHFR is 2.6 kcal mol-1 more stable than truncated protein. This stability difference may be part of the reason why protein from the truncated gene is not found in vivo in E. coli.  相似文献   

18.
The antifolate combination pyrimethamine/sulphadoxine (PYR/SDX; Fansidar) is frequently used to combat chloroquine-resistant malaria. Its success depends upon pronounced synergy between the two components, which target dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) in the folate pathway. This synergy permits clearance of parasites resistant to either drug alone, but its molecular basis is still unexplained. Plasmodium falciparum can use exogenous folate, which is normally present in vivo, bypassing SDX inhibition of DHPS and, apparently, precluding synergy under these conditions. However, we have measured parasite inhibition by SDX/PYR combinations in assays in which folate levels are strictly controlled. In parasites that use exogenous folate efficiently, SDX inhibition can be restored by levels of PYR significantly lower than those required to inhibit DHFR. Isobolograms show that the degree of synergy between PYR and SDX is highly dependent upon prevailing folate concentrations and are indicative of PYR acting to block folate uptake and/or utilization. No significant synergy was observed at physiological drug levels when PYR/SDX acted on purified DHFR, whether wild type or mutant. We conclude that the primary basis for antifolate synergy in these organisms arises from PYR targeting a site (or sites) in addition to DHFR, which restores DHPS as a relevant target for SDX.  相似文献   

19.
Copy number variations (CNVs) are thought to act as an important genetic mechanism underlying phenotypic heterogeneity. Impaired folate metabolism can result in neural tube defects (NTDs). However, the precise nature of the relationship between low folate status and NTDs remains unclear. Using an array‐comparative genomic hybridization (aCGH) assay, we investigated whether CNVs could be detected in the NTD embryonic neural tissues of methotrexate (MTX)‐induced folate dysmetabolism pregnant C57BL/6 mice and confirmed the findings with quantitative real‐time PCR (qPCR). The CNVs were then comprehensively investigated using bioinformatics methods to prioritize candidate genes. We measured dihydrofolate reductase (DHFR) activity and concentrations of folate and relevant metabolites in maternal serum using enzymologic method and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Three high confidence CNVs on XqA1.1, XqA1.1‐qA2, and XqE3 were found in the NTD embryonic neural tissues. Twelve putative genes and three microRNAs were identified as potential susceptibility candidates in MTX‐induced NTDs and possible roles in NTD pathogenesis. DHFR activity and 5‐methyltetrahydrofolate (5‐MeTHF), 5‐formyltetrahydrofolate (5‐FoTHF), and S‐adenosylmethionine (SAM) concentrations of maternal serum decreased significantly after MTX injection. These findings suggest that CNVs caused by defects in folate metabolism lead to NTD, and further support the hypothesis that folate dysmetabolism is a direct cause for CNVs in MTX‐induced NTDs. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 877–893, 2014  相似文献   

20.
Three different forms of dihydrofolate reductase (DHFR) from Escherichia coli with amino acid replacements Thr35----Asp, Asn37----Ser and Arg57----His, and one form containing all three of these changes were obtained by oligonucleotide-directed mutagenesis. These amino acids are on the surface of the protein and two of them (Thr35 and Arg57) are invariant for known sequences of DHFR. Conversion of Asn37----Ser has no effect on the functional activity or the protein level in the cells. The Thr35----Asp replacement leads to a sharp decrease in the protein level, while the addition of a DHFR inhibitor, trimethoprim (Tmp), to the growth medium increases the level of DHFR in the cells. There is a very small quantity of DHFR with all three amino acid changes. The addition of Tmp to the growth medium also leads to an increase in the mutant protein levels. The mutant with the Arg57----His replacement renders the cells sensitive to Tmp, but the level of DHFR is the same as for the wild-type protein. It is suggested that the invariant Thr35 is important for the stable conformation of DHFR whereas Arg57 is essential for protein activity. Various structural and functional aspects of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号