首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The obligate intracellular parasite pathogen Plasmodium falciparum is the causative agent of malaria, a disease that results in nearly one million deaths per year. A key step in disease pathology in the human host is the parasite-mediated rupture of red blood cells, a process that requires extensive proteolysis of a number of host and parasite proteins. However, only a relatively small number of specific proteolytic processing events have been characterized. Here we describe the application of the Protein Topography and Migration Analysis Platform (PROTOMAP) (Dix, M. M., Simon, G. M., and Cravatt, B. F. (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679-691; Simon, G. M., Dix, M. M., and Cravatt, B. F. (2009) Comparative assessment of large-scale proteomic studies of apoptotic proteolysis. ACS Chem. Biol. 4, 401-408) technology to globally profile proteolytic events occurring over the last 6-8 h of the intraerythrocytic cycle of P. falciparum. Using this method, we were able to generate peptographs for a large number of proteins at 6 h prior to rupture as well as at the point of rupture and in purified merozoites after exit from the host cell. These peptographs allowed assessment of proteolytic processing as well as changes in both protein localization and overall stage-specific expression of a large number of parasite proteins. Furthermore, by using a highly selective inhibitor of the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) that has been shown to be a key regulator of host cell rupture, we were able to identify specific substrates whose processing may be of particular importance to the process of host cell rupture. These results provide the first global map of the proteolytic processing events that take place as the human malarial parasite extracts itself from the host red blood cell. These data also provide insight into the biochemical events that take place during host cell rupture and are likely to be valuable for the study of proteases that could potentially be targeted for therapeutic gain.  相似文献   

3.
The accumulation of misfolded proteins stresses the endoplasmic reticulum (ER) and triggers cell death through activation of the multidomain proapoptotic BCL-2 proteins BAX and BAK at the outer mitochondrial membrane. The signaling events that connect ER stress with the mitochondrial apoptotic machinery remain unclear, despite evidence that deregulation of this pathway contributes to cell loss in many human degenerative diseases. In order to "trap" and identify the apoptotic signals upstream of mitochondrial permeabilization, we challenged Bax-/- Bak-/- mouse embryonic fibroblasts with pharmacological inducers of ER stress. We found that ER stress induces proteolytic activation of the BH3-only protein BID as a critical apoptotic switch. Moreover, we identified caspase-2 as the premitochondrial protease that cleaves BID in response to ER stress and showed that resistance to ER stress-induced apoptosis can be conferred by inhibiting caspase-2 activity. Our work defines a novel signaling pathway that couples the ER and mitochondria and establishes a principal apoptotic effector downstream of ER stress.  相似文献   

4.
Caspase activation and proteolytic cleavages are the major events in the early stage of apoptosis. Identification of protein substrates cleaved by caspases will reveal the occurrence of the early events in the apoptotic process and may provide potential drug targets for cancer therapy. Although several N‐terminal MS‐based proteomic approaches have been developed to identify proteolytic cleavages, these methods have their inherent drawbacks. Here we apply a previously developed proteomic approach, protein C‐terminal enzymatic labeling (ProC‐TEL), to identify caspase cleavage events occurring in the early stage of the apoptosis of a myeloma cell line induced by kinase inhibition. Both previously identified and novel caspase cleavage sites are detected and the reduction of the expression level of several proteins is confirmed biochemically upon kinase inhibition although the current ProC‐TEL procedure is not fully optimized to provide peptide identifications comparable to N‐terminal labeling approaches. The identified cleaved proteins form a complex interaction network with central hubs determining morphological changes during the apoptosis. Sequence analyses show that some ProC‐TEL identified caspase cleavage events are unidentifiable when traditional N‐terminomic approaches are utilized. This work demonstrates that ProC‐TEL is a complementary approach to the N‐terminomics for the identification of proteolytic cleavage events such as caspase cleavages in signaling pathways.  相似文献   

5.
MM Dix  GM Simon  C Wang  E Okerberg  MP Patricelli  BF Cravatt 《Cell》2012,150(2):426-440
Caspase proteases are principal mediators of apoptosis, where they cleave hundreds of proteins. Phosphorylation also plays an important role in apoptosis, although the extent to which proteolytic and phosphorylation pathways crosstalk during programmed cell death remains poorly understood. Using a quantitative proteomic platform that integrates phosphorylation sites into the topographical maps of proteins, we identify a cohort of over 500 apoptosis-specific phosphorylation events and show that they are enriched on cleaved proteins and clustered around sites of caspase proteolysis. We find that caspase cleavage can expose new sites for phosphorylation, and, conversely, that phosphorylation at the +3 position of cleavage sites can directly promote substrate proteolysis by caspase-8. This study provides a global portrait of the apoptotic phosphoproteome, revealing heretofore unrecognized forms of functional crosstalk between phosphorylation and caspase proteolytic pathways that lead to enhanced rates of protein cleavage and the unveiling of new sites for phosphorylation.  相似文献   

6.
Neurons bearing presenilins: weapons for defense or suicide?   总被引:4,自引:2,他引:2  
Apoptotic machinery designed for cell's organized self-destruction involve different systems of proteases which cleave vital proteins and disassemble nuclear and cytoplasmic structures, committing the cell to death. The most studied apoptotic proteolytic system is the caspase family, but calpains and the proteasome could play important roles as well. Alzheimer's disease associated presenilins showed to be a substrate for such proteolytic systems, being processed early in several apoptotic models, and recent data suggest that alternative presenilin fragments could regulate cell survival. Mutations in genes encoding presenilins proved to sensitize neurons to apoptosis by different mechanisms e.g. increased caspase-3 activation, oxyradicals production and calcium signaling dysregulation. Here we review the data involving presenilins in apoptosis and discuss a possible role of presenilins in the regulation of apoptotic biochemical machinery.  相似文献   

7.
Genetically programmed (apoptotic) cell death plays a key role in cell and tissue homeostasis and in pathogenesis of various diseases. However, the mechanisms involved in apoptotic cell death are poorly understood. At present, the role of proteases in key events of apoptosis is intensively studied and discussed and the involvement of various proteolytic enzymes in the induction and development of the cell death is well-recognized. Proteases of various classes participating in apoptosis have been identified as well as some substrates of these proteases whose cleavage is critical to cell viability; specific protease inhibitors which prevent the cell death have been synthesized. This review summarizes new data on proteolytic enzymes involved in apoptosis and considers the mechanisms of activation of proteases upon induction of apoptosis and the pathways of their involvement in the cell death. The participation of nuclear proteolytic enzymes in the destabilization of chromatin structure and regulation of DNA fragmentation by endonucleases in apoptotic cells is discussed.  相似文献   

8.
We have compared the behavior of wild-type mouse NEDD-2, a neural precursor cell-expressed, developmentally down-regulated cysteine protease gene, to various mutant forms of the gene in both apoptotic activity in neuronal cells and proteolytic cleavage in the Semliki Forest virus and rabbit reticulocyte protein expression systems. Our results confirm that NEDD-2 processing and apoptotic activity are linked phenomena. They identify aspartate residues as likely targets for autocatalytic cleavage. They establish that cleavage events only occur at specific sites. Finally, they pinpoint differential effects of individual mutations on the overall proteolytic cleavage patterns, raising interesting questions related to the mechanisms of subunit assembly.  相似文献   

9.
Inhibitor of apoptosis (IAP) gene products play an evolutionarily conserved role in regulating programmed cell death in diverse species ranging from insects to humans. Human XIAP, cIAP1 and cIAP2 are direct inhibitors of at least two members of the caspase family of cell death proteases: caspase-3 and caspase-7. Here we compared the mechanism by which IAPs interfere with activation of caspase-3 and other effector caspases in cytosolic extracts where caspase activation was initiated by caspase-8, a proximal protease activated by ligation of TNF-family receptors, or by cytochrome c, which is released from mitochondria into the cytosol during apoptosis. These studies demonstrate that XIAP, cIAP1 and cIAP2 can prevent the proteolytic processing of pro-caspases -3, -6 and -7 by blocking the cytochrome c-induced activation of pro-caspase-9. In contrast, these IAP family proteins did not prevent caspase-8-induced proteolytic activation of pro-caspase-3; however, they subsequently inhibited active caspase-3 directly, thus blocking downstream apoptotic events such as further activation of caspases. These findings demonstrate that IAPs can suppress different apoptotic pathways by inhibiting distinct caspases and identify pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.  相似文献   

10.
Proteolytic cleavage of key cellular proteins by caspases (ICE, CPP32, and Ich-1/Nedd2) may be crucial to the apoptotic process. The retinoblastoma tumor suppressor gene is a negative regulator of cell growth and the retinoblastoma protein (pRb) exhibits anti-apoptotic function. We show that pRb is cleaved during apoptosis induced by either UV irradiation or anti-Fas antibody. Our studies implicate CPP32-like activity in the proteolytic cleavage of pRb. The kinetics of proteolytic cleavage of pRb during apoptosis differ from that observed for other cellular proteins, suggesting that the specific cleavage of pRb during apoptosis may be an important event.  相似文献   

11.
Mobilization of seed protein reserves   总被引:1,自引:0,他引:1  
The mobilization of seed storage proteins upon seed imbibition and germination is a crucial process in the establishment of the seedling. Storage proteins fold compactly, presenting only a few vulnerable regions for initial proteolytic digestion. Evolutionarily related storage proteins have similar three-dimensional structure, and thus tend to be initially cleaved at similar sites. The initial cleavage makes possible subsequent rapid and extensive breakdown catalyzed by endo- and exopeptidases. The proteolytic enzymes that degrade the storage proteins during mobilization identified so far are mostly cysteine proteases, but also include serine, aspartic and metalloproteases. Plants often ensure early initiation of storage protein mobilization by depositing active proteases during seed maturation, in the very compartments where storage proteins are sequestered. Various means are used in such cases to prevent proteolytic attack until after imbibition of the seed with water. This constraint, however, is not always enforced as the dry seeds of some plant species contain proteolytic intermediates as a result of limited proteolysis of some storage proteins. Besides addressing fundamental questions in plant protein metabolism, studies of the mobilization of storage proteins will point out proteolytic events to avoid in large-scale production of cloned products in seeds. Conversely, proteolytic enzymes may be applied toward reduction of food allergens, many of which are seed storage proteins.  相似文献   

12.
Current concepts in apoptosis: The physiological suicide program revisited   总被引:7,自引:0,他引:7  
Apoptosis, or programmed cell death (PCD), involves a complex network of biochemical pathways that normally ensure a homeostatic balance between cellular proliferation and turnover in nearly all tissues. Apoptosis is essential for the body, as its deregulation can lead to several diseases. It plays a major role in a variety of physiological events, including embryonic development, tissue renewal, hormone-induced tissue atrophy, removal of inflammatory cells, and the evolution of granulation tissue into scar tissue. It also has an essential role in wound repair. The various cellular and biochemical mechanisms involved in apoptosis are not fully understood. However, there are two major pathways, the extrinsic pathway (receptor-mediated apoptotic pathway) and the intrinsic pathway (mitochondria-mediated apoptotic pathway), which are both well established. The key component in both is the activation of the caspase cascade. Caspases belong to the family of proteases that ultimately, by cleaving a set of proteins, cause disassembly of the cell. Although the caspase-mediated proteolytic cascade represents a central point in the apoptotic response, its initiation is tightly regulated by a variety of other factors. Among them, Bcl-2 family proteins, TNF and p53 play pivotal roles in the regulation of caspase activation and in the regulation of apoptosis. This review summarizes the established concepts in apoptosis as a physiological cell suicide program, highlighting the recent and significant advances in its study.  相似文献   

13.
Niessen S  Hoover H  Gale AJ 《Proteomics》2011,11(12):2377-2388
Proteases are critical in many physiological processes and the human genome encodes for 566 predicted proteolytic enzymes. Therefore, there is great interest in identifying and characterizing physiologic protease-substrate relationships. The coagulation cascade is a well-described network of serine proteases. However, new interactions of the coagulation cascade with other biological pathways have been discovered only recently. Therefore, we hypothesized that a non-biased protease degradomics analysis of the physiologic coagulation reaction would identify new interactions between the coagulation cascade and other pathways. We used the recently described PROTOMAP technique to profile the complete coagulation degradome. This analysis detected virtually all of the proteins of the coagulation cascade and identified a majority of the expected proteolytic events, suggesting significant coverage of the coagulation degradome. Multiple potential new proteolytic cleavages were detected, including two of transmembrane proteins that may be shed from the surface of blood cells. In addition, this analysis was able to identify several new potentially secreted proteins. A significant majority of the newly identified events were of proteins involved in innate immunity (complement and inflammation). This highlights potential new areas of crosstalk between these linked systems. Future studies will elucidate the details and functional consequences of these proteolytic events during coagulation.  相似文献   

14.
Caspases are a family of cysteine proteases that are expressed as inactive zymogens and undergo proteolytic maturation in a sequential manner in which initiator caspases cleave and activate the effector caspases 3, 6 and 7. Effector caspases cleave structural proteins, signaling molecules, DNA repair enzymes and proteins which inhibit apoptosis. Activation of effector, or executioner, caspases has historically been viewed as a terminal event in the process of programmed cell death. Emerging evidence now suggests a broader role for activated caspases in cellular maturation, differentiation and other non-lethal events. The importance of activated caspases in normal cell development and signaling has recently been extended to the CNS where these proteases have been shown to contribute to axon guidance, synaptic plasticity and neuroprotection. This review will focus on the adaptive roles activated caspases in maintaining viability, the mechanisms by which caspases are held in check so as not produce apoptotic cell death and the ramifications of these observations in the treatment of neurological disorders.  相似文献   

15.
Autocrine and paracrine signals are of paramount importance in both normal and oncogenic events and the composition of such secreted molecular signals (i.e the secretome) designate the communication status of cells. In this context, the analysis of post-translational modifications in secreted proteins may unravel biological circuits regulated by irreversible modifications such as proteolytic processing. In the present study, we have performed a bioinformatic reanalysis of public proteomics data on melanoma cell line secretomes, changing database searching parameters to allow for the identification of proteolytic events generated by active proteases. Such approach enabled the identification of proteolytic signatures which suggested active proteases and whose expression profiles might be targeted in patient tissues or liquid biopsies, as well as their cleaved substrates. Although N-terminomics approaches continue to be the method of choice for the evaluation of proteolytic signaling events in complex samples, the simple approach performed in this work resulted in the gain of biological insights derived from shotgun proteomics data.  相似文献   

16.
17.
Systemic autoimmune diseases are a genetically complex, heterogeneous group of diseases in which the immune system targets a diverse, but highly specific group of intracellular autoantigens. The clustering and marked concentration of these molecules in the surface blebs of apoptotic cells, and their modification by apoptosis-specific proteolytic cleavage and/or phosphorylation at these sites, has focused attention on a unique apoptotic setting as the potential initiating stimulus for systemic autoimmunity. This apoptotic event is likely to (i) occur in a microenvironment containing high concentrations of the targeted antigens, (ii) be pro-immune in nature (e.g. viral infection), and (iii) allow suprathreshold concentrations of antigen with non-tolerized structure (either novel fragments, post-translational modifications, or complexes) to enter the class II processing pathway and initiate a primary immune response. Defective clearance or reduced anti-inflammatory consequences of apoptotic material may be important susceptibility factors in this group of diseases. Once the primary immune response to apoptotic antigens has been initiated, other apoptotic events (occurring in the course of homeostasis or damage) may stimulate the secondary immune response with less stringency, resulting in flares.  相似文献   

18.
Proteolytic activities and proteases of plant chloroplasts   总被引:11,自引:0,他引:11  
A concise overview on the current knowledge of the proteolytic activities in chloroplasts is presented, with an emphasis on the proteolytic events associated with thylakoid membranes. The Dl reaction centre protein of photosystem II undergoes rapid light-dependent turnover and chlorophyll a/b -binding proteins are effectively degraded upon acclimation of plants to higher irradiances. Insights into the partially characterized proteolytic systems in each case will be presented, but the proteases involved still remain unknown. It can be envisaged, however, that the proteolysis is probably an as highly regulated phenomenon as the various steps during biosynthesis of the photosynthetic multiprotein complexes. From the protease point of view, more progress has recently been made in characterization of processing proteases involved in protein import into chloroplasts and in C-terminal processing of the Dl protein. Moreover, there are an increasing number of proteases in chloroplasts which have been discovered and identified as bacterial homologues. These include a Clp-type protease, a homologue of the bacterial protease FtsH and the cyanobacterial PcrA protease, all of which have a specific location in the chloroplast but their definite physiological substrates are still missing. Attempts are made to bring together the recent progress in the identification of proteases and characterisation of proteolytic events in chloroplasts.  相似文献   

19.
Although cryosurgery is attaining increasing clinical acceptance, our understanding of the mechanisms of cryogenic cell destruction remains incomplete. While it is generally accepted that cryoinjured cells die by necrosis, the involvement of apoptosis was recently shown. Our studies of liver cell death by cryogenic temperature revealed the activation of endonuclease p23 and its de novo association with the nuclear matrix. This finding is strongly suggestive of a programmed-type of cell death process. The presumed order underlying cryonecrotic cell death is addressed here by examining the mechanism of p23 activation. To that end, nuclear proteins that were prepared from fresh liver, which is devoid of p23 activity, were incubated with protein fractions isolated from liver exposed to freezing/thawing that possessed a presumed p23 activation factor. We observed that the activation of p23 was the result of a proteolytic event in which cathepsin D played a major role. Different patterns of proteolytic cleavage of nuclear proteins after in vitro incubation of nuclei and in samples isolated from frozen/thawed liver were observed. Although both processes induced p23 activation, the incubation experiments generated proteolytic hallmarks of apoptosis, while freezing/thawing of whole liver resulted in typical necrotic PARP-1 cleavage products and intact lamin B. As an explanation we offer a hypothesis that after freezing, cells possess the potential to die through necrotic as well as apoptotic mechanisms, based on our finding that the cytosol of cells exposed to cryogenic temperatures contains both necrotic and apoptotic executors of cell death.  相似文献   

20.
Non-apoptotic Functions of Caspase-3 in Nervous Tissue   总被引:5,自引:0,他引:5  
Some enzymes that have been recognized as "apoptotic" so far may be involved in important cellular processes not necessarily related to cell death in nervous tissue. The activity of caspase-3, an "apoptotic" enzyme, can be measured in normally functioning neurons. The results reported by several groups point to the possibility that caspases may be involved in nervous tissue function as top enzymes in the regulatory proteolytic cascade. A concept on a new mechanism of synaptic plasticity modulation involving caspase-3 has been formulated postulating a specific role of caspase-3 in normal brain functioning. The idea of synaptic plasticity modulation by caspase-3 is in line with data reported recently. For example, caspase-3 is possibly involved in the long-term potentiation (LTP) phenomenon since proteins that are key players of molecular mechanisms of LTP induction and maintenance are caspase-3 substrates. Experimental results on blocking LTP by a caspase-3 inhibitor confirm this concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号