共查询到20条相似文献,搜索用时 15 毫秒
1.
Agavni Petrosyan I-Hui Hsieh John P. Phillips Kourosh Saberi 《Genetics and molecular biology》2015,38(1):107-114
Mutation of the human gene superoxide dismutase (hSOD1) is
associated with the fatal neurodegenerative disease familial amyotrophic lateral
sclerosis (Lou Gehrig’s disease). Selective overexpression of hSOD1
in Drosophila motorneurons increases lifespan to 140% of normal. The
current study was designed to determine resistance to lifespan decline and failure of
sensorimotor functions by overexpressing hSOD1 in
Drosophila‘s motorneurons. First, we measured the ability to
maintain continuous flight and wingbeat frequency (WBF) as a function of age (5 to 50
days). Flies overexpressing hSOD1 under the D42-GAL4 activator were
able to sustain flight significantly longer than controls, with the largest effect
observed in the middle stages of life. The hSOD1-expressed line also
had, on average, slower wingbeat frequencies in late, but not early life relative to
age-matched controls. Second, we examined locomotor (exploratory walking) behavior in
late life when flies had lost the ability to fly (age ≥ 60 d).
hSOD1-expressed flies showed significantly more robust walking
activity relative to controls. Findings show patterns of functional decline
dissimilar to those reported for other life-extended lines, and suggest that the
hSOD1 gene not only delays death but enhances sensorimotor
abilities critical to survival even in late life. 相似文献
2.
DNA restriction fragments that are stably curved are usually identified by polyacrylamide gel electrophoresis because curved fragments migrate more slowly than normal fragments containing the same number of basepairs. In free solution, curved DNA molecules can be identified by transient electric birefringence (TEB) because they exhibit rotational relaxation times that are faster than those of normal fragments of the same size. In this article, the results observed in free solution and in polyacrylamide gels are compared for a highly curved 199-basepair (bp) restriction fragment taken from the VP1 gene in Simian Virus 40 (SV40) and various sequence mutants and insertion derivatives. The TEB method of overlapping fragments was used to show that the 199-bp fragment has an apparent bend angle of 46 +/- 2 degrees centered at sequence position 1922 +/- 2 bp. Four unphased A- and T-tracts and a mixed A3T4-tract occur within a span of approximately 60 bp surrounding the apparent bend center; for brevity, this 60-bp sequence element is called a curvature module. Modifying any of the A- or T-tracts in the curvature module by site-directed mutagenesis decreases the curvature of the fragment; replacing all five A- and T-tracts by random-sequence DNA causes the 199-bp mutant to adopt a normal conformation, with normal electrophoretic mobilities and birefringence relaxation times. Hence, stable curvature in this region of the VP1 gene is due to the five unphased A- and T- tracts surrounding the apparent bend center. Discordant solution and gel results are observed when long inverted repeats are inserted within the curvature module. These insertion derivatives migrate anomalously slowly in polyacrylamide gels but have normal, highly flexible conformations in free solution. Discordant solution and gel results are not observed if the insert does not contain a long inverted repeat or if the long inverted repeat is added to the 199-bp fragment outside the curvature module. The results suggest that long inverted repeats can form hairpins or cruciforms when they are located within a region of the helix backbone that is intrinsically curved, leading to large mobility anomalies in polyacrylamide gels. Hairpin/cruciform formation is not observed in free solution, presumably because of rapid conformational exchange. Hence, DNA restriction fragments that migrate anomalously slowly in polyacrylamide gels are not necessarily stably curved in free solution. 相似文献
3.
Ahan Dalal Abhaypratap Vishwakarma Naveen Kumar Singh Triveni Gudla Mrinal Kanti Bhattacharyya Kollipara Padmasree Andrea Viehhauser Karl-Josef Dietz Pulugurtha Bharadwaja Kirti 《FEBS letters》2014
Brassica juncea annexin-3 (BjAnn3) was functionally characterized for its ability to modulate H2O2-mediated oxidative stress in Saccharomyces cerevisiae. BjAnn3 showed a significant protective role in cellular-defense against oxidative stress and partially alleviated inhibition of mitochondrial respiration in presence of exogenously applied H2O2. Heterologous expression of BjAnn3 protected membranes from oxidative stress-mediated damage and positively regulated antioxidant gene expression for ROS detoxification. We conclude that, BjAnn3 partially counteracts the effects of thioredoxin peroxidase 1 (TSA1) deficiency and aids in cellular-protection across kingdoms. Despite partial compensation of TSA1 by BjAnn3 in cell-viability tests, the over-complementation in ROS-related features suggests the existence of both redundant (e.g. ROS detoxification) and distinct features (e.g. membrane protection versus proximity-based redox regulator) of both proteins. 相似文献
4.
5.
Secondo A De Mizio M Zirpoli L Santillo M Mondola P 《Biochemical and biophysical research communications》2008,376(1):143-147
The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation.These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor. 相似文献
6.
The dinickel(II) compound [Ni2(μ-OAc)2(OAc)2(μ-H2O)(asy·dmen)2]·2.5H2O, 1; undergoes facile reaction in a 1:2 molar ratio with benzohydroxamic acid (BHA) in ethanol to give the novel nickel(II) tetranuclear hydroxamate complex [Ni4(μ-OAc)3(μ-BA)3(asy·dmen)3][OTf]2·H2O, 2, in which the bridging acetates, bridging two nickel atoms in 1, undergo a carboxylate shift from the μ2-η1:η1 bridging mode of binding to the μ3-η1:η2 bridging three nickel atoms in the tetramer. The structure of complex 2 was determined by single-crystal X-ray crystallography. The two monodentate acetates, water and two bidentate bridging acetates of two moles of complex 1 are replaced by three monodentate bridging acetates and three benzohydroxamates. Three nickel atoms in the tetramer, Ni(2), Ni(3) and Ni(4) are in a N2O4 octahedral environment, while the fourth nickel atom Ni(1) is in an O(6) octahedral environment. The Ni-Ni separations are Ni(1)-Ni(2) = 3.108 Å, Ni(1)-Ni(3) = 3.104 Å and Ni(1)-Ni(4) = 3.110 Å, which are longer than previously studied in dinuclear urease inhibited models but shorter than in the nickel(II) tetrameric glutarohydroxamate complex [Ni4(μ-OAc)2(μ-gluA2)2(tmen)4][OTf]2, isolated and characterized previously in this laboratory. Magnetic studies of the tetrameric complex show that the four Ni(II) ions are ferromagnetically coupled, leading to a total ground spin state ST = 4. Three analogous tetranuclear nickel hydroxamates were prepared from AHA and BHA and the appropriate dinuclear complex with either sy·dmen or asy·dmen as capping ligands. 相似文献
7.
Knockout of copper, zinc-superoxide dismutase (SOD1) and (or) cellular glutathione peroxidase (GPX1) has been reported to have dual impacts on coping with free radical-induced oxidative injury. Because bacterial endotoxin lipopolysaccharide (LPS) triggers inflammatory responses involving the release of cytokines, nitric oxide and superoxide in targeted organs such as liver, in this study we used SOD1 knockout (SOD1−/−), GPX1 knockout (GPX1−/−), GPX1 and SOD1 double-knockout (DKO) and their wild-type (WT) mice to investigate the role of these two antioxidant enzymes in LPS-induced oxidative injury in liver. Mice of the four genotypes (2 month old) were killed at 0, 3, 6 or 12 h after an i.p. injection of saline or 5 mg LPS/kg body weight. The LPS injection caused similar increase in plasma alanine aminotransferase among the four genotypes. Hepatic total glutathione (GSH) was decreased (P < 0.05) compared with the initial values by the LPS injection at all time points in the WT mice, but only at 6 and 12 h in the other three genotypes. The GSH level in the DKO mice was higher (P < 0.05) than in the WT at 6 h. Although the LPS injection resulted in substantial increases in plasma NO in a time-dependent manner in all genotypes, the NO level in the DKO mice was lower (P < 0.05) at 3, 6 and 12 h than in the WT. The level in the GPX1−/− and SOD1−/− mice was also lower (P < 0.05) than in the WT at 3 h. The LPS-mediated hepatic protein nitration was detected in the WT and GPX1−/− mice at 3, 6 or 12 h, but not in the SOD1−/−. In conclusion, knockout of SOD1 and (or) GPX1 did not potentiate the LPS-induced liver injury, but delayed the induced hepatic GSH depletion and plasma NO production. 相似文献
8.
The photosensitized reduction of resorufin (RSF), the fluorescent product of Amplex Red, was investigated using electron spin resonance (ESR), optical absorption/fluorescence, and oxygen consumption measurements. Anaerobic reaction of RSF in the presence of the electron donor reduced nicotinamide adenine dinucleotide (NADH) demonstrated that during visible light irradiation (λ > 300 nm), RSF underwent one-electron reduction to produce a semiquinoneimine-type anion radical (RSF• ‾) as demonstrated by direct ESR. Spin-trapping studies of incubations containing RSF, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and NADH demonstrated, under irradiation with visible light, the production of the superoxide dismutase (SOD)-sensitive DMPO/•OOH adduct. Both absorption and fluorescence spectra of RSF in the presence of NADH demonstrated that the RSF• ‾ was further reduced during irradiation with formation of its colorless dihydroquinoneimine form, dihydroresorufin (RSFH2). Both RSF• ‾ and RSFH2, when formed in an aerobic system, were immediately oxidized by oxygen, which regenerated the dye and formed superoxide. Oxygen consumption measurements with a Clark-type oxygen electrode showed that molecular oxygen was consumed in a light-dependent process. The suppression of oxygen consumption by addition of SOD or catalase further confirmed the production of superoxide and hydrogen peroxide. 相似文献
9.
Yoshiki Minegishi Yasuo Sakai Yasuhito Yahara Haruhiko Akiyama Hideki Yoshikawa Ko Hosokawa Noriyuki Tsumaki 《Biochemical and biophysical research communications》2014
Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone. 相似文献
10.
Parisa Bahmani Raheleh Halabian Mehdi Rouhbakhsh Amaneh Mohammadi Roushandeh Nasser Masroori Majid Ebrahimi Ali Samadikuchaksaraei Mohammad Ali Shokrgozar Mehryar Habibi Roudkenar 《Cell stress & chaperones》2010,15(4):395-403
Lipocalin-2 (Lcn2, NGAL) is a member of the lipocalin super family with diverse function such as the induction of apoptosis,
the suppression of bacterial growth, and modulation of inflammatory response. Much interest has recently been focused on the
physiological/pathological role of the lipocalin-2 that is considered to be a novel protective factor against oxidative stress.
However, its precise biological roles in this protection are not fully understood. In this report we intended to test the
effect of lipocalin-2 on the expression of heme oxygenase (1, 2) and superoxide dismutase (1, 2) which are two strong antioxidants. NGAL was cloned to pcDNA3.1 plasmid by using genetic engineering method. The recombinant
vector was transfected to CHO and HEK293T to establish stable cell expressing NGAL and the expression of HO-1, 2 and SOD1, 2 were compared with appropriate controls by RT-PCR and western blot. On the other hand, expression of NGAL was suppressed
by siRNA transfection in order to study the effect of lipocalin-2 on mentioned genes/proteins. The results showed that the
expression of HO-1 and SOD1, 2 enzymes were higher in cells expressing recombinant lipocalin-2 compared with the control cells. Although the expression
of HO-1 was lower in NGAL silencing cells, the expression of SOD1 and SOD2 were higher. Our data suggest that NGAL is a potent inducer of HO-1 and somewhat SOD1 and SOD2 and it appears that part of antioxidant property of NGAL could be attributed to the induction of HO-1and SOD1, 2. 相似文献
11.
An in-vitro selection strategy was used to obtain strongly stabilized variants of the beta1 domain of protein G (Gbeta1). In a two-step approach, first candidate positions with a high potential for stabilization were identified in Gbeta1 libraries that were created by error-prone PCR, and then, after randomization of these positions by saturation mutagenesis, strongly stabilized variants were selected. For both steps the in-vitro selection method Proside was employed. Proside links the stability of a protein with the infectivity of a filamentous phage. Ultimately, residues from the two best selected variants were combined in a single Gbeta1 molecule. This variant with the four mutations E15V, T16L, T18I, and N37L showed an increase of 35.1 degrees C in the transition midpoint and of 28.5 kJ mol(-1) (at 70 degrees C) in the Gibbs free energy of stabilization. It was considerably more stable than the best variant from a previous Proside selection, in which positions were randomized that had originally been identified by computational design. Only a single substitution (T18I) was found in both selections. The best variants from the present selection showed a higher cooperativity of thermal unfolding, as indicated by an increase in the enthalpy of unfolding by about 60 kJ mol(-1). This increase is apparently correlated with the presence of Leu residues that were selected at the positions 16 and 37. 相似文献
12.
13.
The Rtf1 subunit of the Paf1 complex is required for specific histone modifications, including histone H2B lysine 123 monoubiquitylation. In Saccharomyces cerevisiae, deletion of RTF1 is lethal in the absence of Rkr1, a ubiquitin-protein ligase involved in the destruction of nonstop proteins, which arise from mRNAs lacking stop codons or translational readthrough into the poly(A) tail. We performed a transposon-based mutagenesis screen to identify suppressors of rtf1Δ rkr1Δ lethality and found that a mutation in the gene encoding the protein chaperone Hsp104 rescued viability. Hsp104 plays a role in prion propagation, including the maintenance of [PSI(+)], which contributes to the synthesis of nonstop proteins. We demonstrate that rtf1Δ and rkr1Δ are synthetically lethal only in the presence of [PSI(+)]. The deletion, inactivation, and overexpression of HSP104 or the overexpression of prion-encoding genes URE2 and LSM4 clear [PSI(+)] and rescue rtf1Δ rkr1Δ lethality. In addition, the presence of [PSI(+)] decreases the fitness of rkr1Δ strains. We investigated whether the loss of RTF1 exacerbates an overload in nonstop proteins in rkr1Δ [PSI(+)] strains but, using reporter plasmids, found that rtf1Δ decreases nonstop protein levels, indicating that excess nonstop proteins may not be the cause of synthetic lethality. Instead, our data suggest that the loss of Rtf1-dependent histone modifications increases the burden on quality control pathways in cells lacking Rkr1 and containing [PSI(+)]. 相似文献
14.
Se-dependent glutathione peroxidase-1 (GPX1) and Cu,Zn-superoxide dismutase (SOD1) are two major intracellular antioxidant enzymes. The purpose of this study was to elucidate the biochemical mechanisms for the 40% loss of hepatic GPX1 activity in SOD1−/− mice. Compared with the wild type (WT), the SOD1−/− mice showed no change in the total amount of GPX1 protein. However, their total enzyme protein exhibited 31 and 38% decreases (P < 0.05) in the apparent kcat for hydrogen peroxide and tert-butylperoxide (at 2 mM GSH), respectively. Most striking, mass spectrometry revealed two chemical forms of the 47th residue of GPX1: the projected native selenocysteine (Sec) and the Se-lacking dehydroalanine (DHA). The hepatic GPX1 protein of the SOD1−/− mice contained 38% less Sec and 77% more DHA than that of WT and showed aggravated dissociation of the tetramer structure. In conclusion, knockout of SOD1 elevated the conversion of Sec to DHA in the active site of hepatic GPX1, leading to proportional decreases in the apparent kcat and activity of the enzyme protein as a whole. Our data reveal a structural and kinetic mechanism for the in vivo functional dependence of GPX1 on SOD1 in mammals and provide a novel mass spectrometric method for the assay of oxidative modification of the GPX1 protein. 相似文献
15.
16.
Superoxide dismutase (SOD, EC 1.15.1.1) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned cDNA encoding SOD activated with copper/zinc (CuZn SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of CuZn SOD was 692 bp and had a 465 bp open reading frame encoding 154 amino acids. The deduced amino acid sequence of B. calyciflorus CuZn SOD showed 63.87%, 60.00%, 59.74% and 48.89% similarity with the CuZn SOD of the Ctenopharyn godonidella, Schistosoma japonicum, Drosophila melanogaster and Caenorhabditis elegans, respectively. The phylogenetic tree constructed based on the amino acid sequences of CuZn SODs from B. calyciflorus and other organisms revealed that rotifer is closely related to nematode. Analysis of the expression of CuZn SOD under different temperatures (15, 30 and 37 °C) revealed that its expression was enhanced 4.2-fold (p < 0.001) at 30 °C after 2 h, however, the lower temperature (15 °C) promoted CuZn SOD transiently (4.1-fold, p < 0.001) and then the expression of CuZn SOD decreased to normal level (p > 0.05). When exposed to H2O2 (0.1 mM), CuZn SOD, manganese superoxide dismutase (Mn SOD) and catalase (CAT) gene were upregulated, and in addition, the mRNA expression of CuZn SOD gene was induced instantaneously after exposure to vitamin E. It indicates that the CuZn SOD gene would be an important gene in response to oxidative and temperature stress. 相似文献
17.
Solanum nigrum L. (SN) is an herbal plant that has been used as hepatoprotective and anti-inflammation agent in Chinese medicine. In this study, the protective effects of water extract of SN (SNE) against liver damage were evaluated in carbon tetrachloride (CCl4)-induced chronic hepatotoxicity in rats. Sprague-Dawley (SD) rats were orally fed with SNE (0.2, 0.5, and 1.0 g kg(-1) bw) along with administration of CCl4 (20% CCl4/corn oil; 0.5 mL kg(-1) bw) for 6 weeks. The results showed that the treatment of SNE significantly lowered the CCl4-induced serum levels of hepatic enzyme markers (GOT, GPT, ALP, and total bilirubin), superoxide and hydroxyl radical. The hepatic content of GSH, and activities and expressions of SOD, GST Al, and GST Mu that were reduced by CCl4 were brought back to control levels by the supplement of SNE. Liver histopathology showed that SNE reduced the incidence of liver lesions including hepatic cells cloudy swelling, lymphocytes infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by CCl4 in rats. Therefore, the results of this study suggest that SNE could protect liver against the CCl4-induced oxidative damage in rats, and this hepatoprotective effect might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects. 相似文献
18.
Hamano K Katafuchi T Kikumoto K Minamino N 《Biochemical and biophysical research communications》2005,330(1):75-80
Calcitonin receptor-stimulating peptide-1 (CRSP-1) is a peptide recently identified from porcine brain by monitoring the cAMP production through an endogenous calcitonin (CT) receptor in the renal epithelial cell line LLC-PK(1). Here we investigated the effects of CRSP-1 on the ion transport and growth of LLC-PK(1) cells. CRSP-1 inhibited the growth of LLC-PK(1) cells with a higher potency than porcine CT. CRSP-1 enhanced the uptake of (22)Na(+) into LLC-PK(1) cells more strongly than did CT and slightly reduced the (45)Ca(2+) uptake. The enhancement of the (22)Na(+) uptake was abolished by 5-(N-ethyl-N-isopropyl) amiloride, a strong Na(+)/H(+) exchanger (NHE) inhibitor for NHE1, even at a concentration of 1x10(-8)M, although other ion transporter inhibitors did not affect the (22)Na(+) uptake. These results indicate that CRSP-1 enhances the (22)Na(+) uptake by the specific activation of NHE1. Taken together, CRSP-1 is considered to be a new regulator for the urinary ion excretion and renal epithelial cell growth. 相似文献
19.
This study was designed to examine how systemic administration of an N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, altered respiratory timing in unanesthetized rats under normoxia and hypoxia. To detect fine changes in inspiratory time (TI) and expiratory time (TE), and cycle duration (TTOT), we prepared a diaphragmatic electromyogram (EMGdia). Diaphragm electrodes and arterial and venous catheters were inserted into Wistar rats (n = 8) under pentobarbital anesthesia. The next day, EMGdia was recorded before and after intravenous administration of MK-801 (3 mg/kg) under normoxia and hypoxia (12% O2) without anesthesia, and the respiratory timing (TI, TE, TTOT), respiratory frequency (fR), and amplitude of the integrated EMGdia were measured. Arterial blood gases (ABGs), mean arterial pressure (MAP), and heart rate (fH) were also measured with the EMGdia. Under normoxia, MK-801 increased fR owing to a significant decrease in TE, and elevated both MAP and fH. Under hypoxia, MK-801 suppressed an increase in fR owing to a significant increase in TI, and did not accelerate fH. In both gaseous conditions, on ABGs, MK-801 did not alter partial pressure of O2 (PaO2) or CO2 (PaCO2), and slightly decreased pH (but not less than 7.4). MK-801 significantly decreased hypoxic response (%change from normoxia) in fR, and increased that in EMGdia amplitude, and did not alter a total ventilatory index (fRxEMGdia amplitude). The results suggest that an NMDA receptor-mediated mechanism partially determines fR through significant alterations in respiratory timing, particularly in which the hypoxic ventilatory response was obtained in unanesthetized rats. 相似文献
20.
Carlos Velez-Pardo Marlene Jimenez del Rio Guy Ebinger Georges Vauquelin 《Neurochemistry international》1995,26(6):615-622
The authors previously reported that Fe2+ is capable of increasing the binding of dopamine and of serotonin to “serotonin binding proteins” which are present in soluble extracts from calf brain. In this study, it is shown that Mn2+ and Cu2+ are also capable of increasing the binding, but for dopamine only. As for Fe2+, Mn2+ and Cu2+ are likely to promote the binding by virtue of their ability to enhance the oxidation of dopamine into dopamine-O-quinone, a derivative which is known to undergo covalent association with sulfhydryl groups of proteins. Data such as the irreversible nature of the majority of the binding, the inhibitory action of reducing agents (sodium ascorbate) and of reagents which contain, or modify sulfhydryl groups (reduced glutathione) are compatible with such a mechanism. The three metal ions are also capable of inactivating part of the binding sites on SBP directly; this effect is more pronounced for Cu2+ than for Fe2+ and it is only weak for Mn2+. The Fe2+-mediated binding of dopamine is inhibited by the superoxide dismutase enzyme, and it was therefore suggested that Fe2+ enhances the oxidation of dopamine by virtue of its ability to produce superoxide radicals out of dissolved molecular oxygen. Such a mechanism does not appear to take place in the case of Mn2+ and Cu2+. Instead, it is likely that Cu2+ and dopamine form a complex which is highly susceptible towards oxidation by dissolved molecular oxygen. Mn2+, on the other hand, can easily be oxidized into Mn3+, which is capable to oxidize dopamine by itself. Chronic manganese intoxication (from exposure to manganese) and Wilson's disease (related to inadequate elimination of copper) go along with neurological symptoms which are very similar to those encountered in Parkinson's disease. Our data indicate that manganese and copper ions accelerate the oxidation of catecholamines to produce toxic quinones. These quinones could, at least in part, account for the degeneration of dopamininergic neurons in such pathologies. 相似文献