首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously shown that c-MYC-induced mammary tumorigenesis in mice proceeds via a preferred secondary pathway involving spontaneous activating mutations in Kras2 (C. M. D'Cruz, E. J. Gunther, R. B. Boxer, J. L. Hartman, L. Sintasath, S. E. Moody, J. D. Cox, S. I. Ha, G. K. Belka, A. Golant, R. D. Cardiff, and L. A. Chodosh, Nat. Med. 7:235-239, 2001). In contrast, we now demonstrate that Wnt1-induced mammary tumorigenesis proceeds via a pathway that preferentially activates Hras1. In addition, we find that expression of oncogenic forms of Kras2 and Hras1 from their endogenous promoters has markedly different consequences for the progression of tumors to oncogene independence. Spontaneous activating Kras2 mutations occurring in either MYC- or Wnt1-induced tumors were strongly associated with oncogene-independent tumor growth following MYC or Wnt1 downregulation. In contrast, Hras1-mutant Wnt1-induced tumors consistently remained oncogene dependent. Additionally, Kras2-mutant tumors exhibited substantially higher levels of ras-GTP, phospho-Erk1/2, and phospho-Mek1/2 compared to Hras1-mutant tumors, suggesting the involvement of the ras/mitogen-activated protein kinase (MAPK) pathway in the acquisition of oncogene independence. Consistent with this, by use of carcinogen-induced ras mutations as well as knock-in mice harboring a latent activated Kras2 allele, we demonstrate that Kras2 activation strongly synergizes with both c-MYC and Wnt1 in mammary tumorigenesis and promotes the progression of tumors to oncogene independence. Together, our findings support a model for tumorigenesis in which c-MYC and Wnt1 select for the outgrowth of cells harboring mutations in specific ras isoforms and that these secondary mutations, in turn, determine the extent of ras/MAPK pathway activation and the potential for oncogene-independent growth.  相似文献   

2.
The three closely related human Ras genes, Hras, Nras, and Kras, are all widely expressed, engage a common set of downstream effectors, and can each exhibit oncogenic activity. However, the vast majority of activating Ras mutations in human tumors involve Kras. Moreover, Kras mutations are most frequently seen in tumors of endodermally derived tissues (lung, pancreas, and colon), suggesting that activated Kras may affect an endodermal progenitor to initiate oncogenesis. Using a culture model of retinoic acid (RA)-induced stem cell differentiation to endoderm, we determined that while activated HrasV12 promotes differentiation and growth arrest in these endodermal progenitors, KrasV12 promotes their proliferation. Furthermore, KrasV12-expressing endodermal progenitors fail to differentiate upon RA treatment and continue to proliferate and maintain stem cell characteristics. NrasV12 neither promotes nor prevents differentiation. A structure-function analysis demonstrated that these distinct effects of the Ras isoforms involve their variable C-terminal domains, implicating compartmentalized signaling, and revealed a requirement for several established Ras effectors. These findings indicate that activated Ras isoforms exert profoundly different effects on endodermal progenitors and that mutant Kras may initiate tumorigenesis by expanding a susceptible stem/progenitor cell population. These results potentially explain the high frequency of Kras mutations in tumors of endodermal origin.  相似文献   

3.
Activating Ras mutations can induce either proliferation or senescence depending on the cellular context. To determine whether Ras activation has context-dependent effects in the mammary gland, we generated doxycycline-inducible transgenic mice that permit Ras activation to be titrated. Low levels of Ras activation - similar to those found in non-transformed mouse tissues expressing endogenous oncogenic Kras2 - stimulate cellular proliferation and mammary epithelial hyperplasias. In contrast, high levels of Ras activation - similar to those found in tumours bearing endogenous Kras2 mutations - induce cellular senescence that is Ink4a-Arf- dependent and irreversible following Ras downregulation. Chronic low-level Ras induction results in tumour formation, but only after the spontaneous upregulation of activated Ras and evasion of senescence checkpoints. Thus, high-level, but not low-level, Ras activation activates tumour suppressor pathways and triggers an irreversible senescent growth arrest in vivo. We suggest a three-stage model for Ras-induced tumorigenesis consisting of an initial activating Ras mutation, overexpression of the activated Ras allele and, finally, evasion of p53-Ink4a-Arf-dependent senescence checkpoints.  相似文献   

4.
Matrix metalloproteinase 10 (MMP-10; stromelysin 2) is a member of a large family of structurally related matrix metalloproteinases, many of which have been implicated in tumor progression, invasion and metastasis. We recently identified Mmp10 as a gene that is highly induced in tumor-initiating lung bronchioalveolar stem cells (BASCs) upon activation of oncogenic Kras in a mouse model of lung adenocarcinoma. However, the potential role of Mmp10 in lung tumorigenesis has not been addressed. Here, we demonstrate that Mmp10 is overexpressed in lung tumors induced by either the smoke carcinogen urethane or oncogenic Kras. In addition, we report a significant reduction in lung tumor number and size after urethane exposure or genetic activation of oncogenic Kras in Mmp10 null (Mmp10(-/-)) mice. This inhibitory effect is reflected in a defect in the ability of Mmp10-deficient BASCs to expand and undergo transformation in response to urethane or oncogenic Kras in vivo and in vitro, demonstrating a role for Mmp10 in the tumor-initiating activity of Kras-transformed lung stem cells. To determine the potential relevance of MMP10 in human cancer we analyzed Mmp10 expression in publicly-available gene expression profiles of human cancers. Our analysis reveals that MMP10 is highly overexpressed in human lung tumors. Gene set enhancement analysis (GSEA) demonstrates that elevated MMP10 expression correlates with both cancer stem cell and tumor metastasis genomic signatures in human lung cancer. Finally, Mmp10 is elevated in many human tumor types suggesting a widespread role for Mmp10 in human malignancy. We conclude that Mmp10 plays an important role in lung tumor initiation via maintenance of a highly tumorigenic, cancer-initiating, stem-like cell population, and that Mmp10 expression is associated with stem-like, highly metastatic genotypes in human lung cancers. These results indicate that Mmp10 may represent a novel therapeutic approach to target lung cancer stem cells.  相似文献   

5.
Thirty percent of human breast cancers have amplification of ERBB2, often in conjunction with mutations in p53. The most common p53 mutation in human breast cancers is an Arg-to-His mutation at codon 175, an allele that functions in a dominant oncogenic manner in tumorigenesis assays and is thus distinct from loss of p53. Transgenic mice expressing mouse mammary tumor virus-driven neu transgene (MMTV-neu) develop clonal mammary tumors with a latency of 234 days, suggesting that other events are necessary for tumor development. We have examined the role of mutations in p53 in tumor development in these mice. We have found that 37% of tumors arising in these mice have a missense mutations in p53. We have directly tested for cooperativity between neu and mutant p53 in mammary tumorigenesis by creating bitransgenic mice carrying MMTV-neu and 172Arg-to-His p53 mutant (p53-172H). In these bitransgenic mice, tumor latency is shortened to 154 days, indicating strong cooperativity. None of the nontransgenic mice or the p53-172H transgenic mice developed tumors within this time period. Tumors arising in the p53-172H/neu bitransgenic mice were anaplastic and aneuploid and exhibited increased apoptosis, in distinction to tumors arising in p53-null mice, in which apoptosis is diminished. Further experiments address potential mechanisms of cooperativity between the two transgenes. In these bitransgenic mice, we have recapitulated two common genetic lesions that occur in human breast cancer and have shown that p53 mutation is an important cooperating event in neu-mediated oncogenesis.  相似文献   

6.
Multiple tumor suppressor pathways negatively regulate telomerase   总被引:26,自引:0,他引:26  
Lin SY  Elledge SJ 《Cell》2003,113(7):881-889
  相似文献   

7.
8.
Acute T-cell lymphoblastic leukemia/lymphoma (T-ALL) is an aggressive hematopoietic malignancy affecting both children and adults. Previous studies of T-ALL mouse models induced by different genetic mutations have provided highly diverse results on the issues of T-cell leukemia/lymphoma-initiating cells (T-LICs) and potential mechanisms contributing to T-LIC transformation. Here, we show that oncogenic Kras (Kras G12D) expressed from its endogenous locus is a potent inducer of T-ALL even in a less sensitized BALB/c background. Notch1 mutations, including exon 34 mutations and recently characterized type 1 and 2 deletions, are detected in 100% of Kras G12D-induced T-ALL tumors. Although these mutations are not detected at the pre-leukemia stage, incremental up-regulation of NOTCH1 surface expression is observed at the pre-leukemia and leukemia stages. As secondary genetic hits in the Kras G12D model, Notch1 mutations target CD8+ T-cells but not hematopoietic stem cells to further promote T-ALL progression. Pre-leukemia T-cells without detectable Notch1 mutations do not induce T-ALL in secondary recipient mice compared with T-ALL tumor cells with Notch1 mutations. We found huge variations in T-LIC frequency and immunophenotypes of cells enriched for T-LICs. Unlike Pten deficiency-induced T-ALL, oncogenic Kras-initiated T-ALL is not associated with up-regulation of the Wnt/β-catenin pathway. Our results suggest that up-regulation of NOTCH1 signaling, through either overexpression of surface NOTCH1 or acquired gain-of-function mutations, is involved in both T-ALL initiation and progression. Notch1 mutations and Kras G12D contribute cooperatively to leukemogenic transformation of normal T-cells.  相似文献   

9.
10.
Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP) mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre) in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus). Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015), yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors.  相似文献   

11.
Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the Kras(LA2) model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras-driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from Kras(LA2) mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the Kras(LA2) allele on the inbred FVB/N mouse strain, and in this genetic background, there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the Kras(LA2) model of lung cancer and that the requirement for these alterations may be dependent on the genetic background of the mouse strain.  相似文献   

12.
PIK3CA gain-of-function mutations are a common oncogenic event in human malignancy, making phosphatidylinositol 3-kinase (PI3K) a target for cancer therapy. Despite the promise of targeted therapy, resistance often develops, leading to treatment failure. To elucidate mechanisms of resistance to PI3K-targeted therapy, we constructed a mouse model of breast cancer conditionally expressing human PIK3CA(H1047R). Notably, most PIK3CA(H1047R)-driven mammary tumors recurred after PIK3CA(H1047R) inactivation. Genomic analyses of recurrent tumors revealed multiple lesions, including focal amplification of Met or Myc (also known as c-Met and c-Myc, respectively). Whereas Met amplification led to tumor survival dependent on activation of endogenous PI3K, tumors with Myc amplification became independent of the PI3K pathway. Functional analyses showed that Myc contributed to oncogene independence and resistance to PI3K inhibition. Notably, PIK3CA mutations and c-MYC elevation co-occur in a substantial fraction of human breast tumors. Together, these data suggest that c-MYC elevation represents a potential mechanism by which tumors develop resistance to current PI3K-targeted therapies.  相似文献   

13.
Although oncogenic ras plays a pivotal role in neoplastic transformation, it triggers an anti-oncogenic defense mechanism known as premature senescence in normal cells. In this study, we investigated the induction of cellular responses by different expression levels of oncogenic ras in primary human fibroblasts. We found that a moderate, severalfold increase in ras expression promoted cell growth. Further elevation of ras expression initially enhanced proliferation but eventually induced p16INK4A expression and senescence. The induction of these opposing cellular responses by ras signals of different intensity was achieved through differential activation of the MAPK pathways that mediated these responses. Whereas moderate ras activities only stimulated the mitogenic MEK-ERK pathway, high intensity ras signals induced MEK and ERK to higher levels, leading to stimulation of the MKK3/6-p38 pathway, which had been shown previously to act downstream of Ras-MEK to trigger the senescence response. Thus, these studies have revealed a mechanism for the differential effects of ras on cell proliferation. Furthermore, moderate ras activity mediated transformation in cooperation with E6E7 and hTERT, suggesting that a moderate intensity ras signal can provide sufficient oncogenic activities for tumorigenesis. This result also implies that the ability of ras to promote proliferation and oncogenic transformation can be uncoupled with that to induce senescence in cell culture and that the development of tumors with relatively low ras activities may not need to acquire genetic alterations that bypass premature senescence.  相似文献   

14.
Saddic LA  Wirt S  Vogel H  Felsher DW  Sage J 《PloS one》2011,6(5):e19758
Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes.  相似文献   

15.
Tumor heterogeneity: morphological, molecular and clinical implications   总被引:3,自引:0,他引:3  
Malignant tumors are characterized by their great heterogeneity and variability. There are hundreds of different types of malignant tumors that harbour many oncogenic alterations. The tumor heterogeneity has important morphological, molecular and clinical implications. Except for some hematopoietic and lymphoproliferative processes and small cell infant tumors, there are not specific molecular alterations for most human tumors. In this review we summarize the most important aspects of carcinogenesis and chemoradiosensitivity of malignant cells. In this regard, some oncogenes such as neu, ras and bcl-2 have been associated with cellular resistance to treatment with anticancer agents. The knowledge of oncogenic alterations involved in each tumor can be important to correlate the morphological features, the genetic background, the prognosis and the clinical response to treatment with anticancer agents. Based on the molecular background of the tumor there are new cancer gene therapy protocols. For example using adenovirus Ela in tumors with overexpression of neu oncogene, inhibitors of tyrosine kinase specific for the PDGF receptor in glioma, inhibitors of farnesil transferase to prevent ras activity in tumors with mutations in the ras gene.  相似文献   

16.
Wulf G  Garg P  Liou YC  Iglehart D  Lu KP 《The EMBO journal》2004,23(16):3397-3407
Phosphorylation on certain Ser/Thr-Pro motifs is a major oncogenic mechanism. The conformation and function of phosphorylated Ser/Thr-Pro motifs are further regulated by the prolyl isomerase Pin1. Pin1 is prevalently overexpressed in human cancers and implicated in oncogenesis. However, the role of Pin1 in oncogenesis in vivo is not known. We have shown that Pin1 ablation is highly effective in preventing oncogenic Neu or Ras from inducing cyclin D1 and breast cancer in mice, although it neither affects transgene expression nor mammary gland development. Moreover, we have developed an ex vivo assay to uncover that a significant fraction of primary mammary epithelial cells from Neu or Ras mice display various malignant properties long before they develop tumors in vivo. Importantly, these early transformed properties are effectively suppressed by Pin1 deletion, which can be fully rescued by overexpression of cyclin D1. Thus, Pin1 is essential for tumorigenesis and is an attractive anticancer target. Our ex vivo assay can be used to study early events of breast cancer development in genetically predisposed mice.  相似文献   

17.
In human somatic tumorigenesis, mutations are thought to arise sporadically in individual cells surrounded by unaffected cells. This contrasts with most current transgenic models where mutations are induced synchronously in entire cell populations. Here we have modeled sporadic oncogene activation using a transgenic mouse in which c-MYC is focally activated in prostate luminal epithelial cells. Focal c-MYC expression resulted in mild pathology, but prostate-specific deletion of a single allele of the Pten tumor suppressor gene cooperated with c-MYC to induce high grade prostatic intraepithelial neoplasia (HGPIN)/cancer lesions. These lesions were in all cases associated with loss of Pten protein expression from the wild type allele. In the prostates of mice with concurrent homozygous deletion of Pten and focal c-MYC activation, double mutant (i.e. c-MYC+;Pten-null) cells were of higher grade and proliferated faster than single mutant (Pten-null) cells within the same glands. Consequently, double mutant cells outcompeted single mutant cells despite the presence of increased rates of apoptosis in the former. The p53 pathway was activated in Pten-deficient prostate cells and tissues, but c-MYC expression shifted the p53 response from senescence to apoptosis by repressing the p53 target gene p21Cip1. We conclude that c-MYC overexpression and Pten deficiency cooperate to promote prostate tumorigenesis, but a p53-dependent apoptotic response may present a barrier to further progression. Our results highlight the utility of inducing mutations focally to model the competitive interactions between cell populations with distinct genetic alterations during tumorigenesis.  相似文献   

18.
Chronic pancreatitis increases by 16-fold the risk of developing pancreatic ductal adenocarcinoma (PDAC), one of the deadliest human cancers. It also appears to accelerate cancer progression in genetically engineered mouse models. We now report that in a mouse model where oncogenic Kras is activated in all pancreatic cell types, two brief episodes of acute pancreatitis caused rapid PanIN progression and accelerated pancreatic cancer development. Thus, a brief inflammatory insult to the pancreas, when occurring in the context of oncogenic KrasG12D, can initiate a cascade of events that dramatically enhances the risk for pancreatic malignant transformation.  相似文献   

19.
Role of autophagy in breast cancer   总被引:1,自引:0,他引:1  
Autophagy is an evolutionarily conserved process of cytoplasm and cellular organelle degradation in lysosomes. Autophagy is a survival pathway required for cellular viability during starvation; however, if it proceeds to completion, autophagy can lead to cell death. In neurons, constitutive autophagy limits accumulation of polyubiquitinated proteins and prevents neuronal degeneration. Therefore, autophagy has emerged as a homeostatic mechanism regulating the turnover of long-lived or damaged proteins and organelles, and buffering metabolic stress under conditions of nutrient deprivation by recycling intracellular constituents. Autophagy also plays a role in tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in many human ovarian, breast, and prostate cancers, and beclin1(+/-) mice are tumor-prone. We found that allelic loss of beclin1 renders immortalized mouse mammary epithelial cells susceptible to metabolic stress and accelerates lumen formation in mammary acini. Autophagy defects also activate the DNA damage response in vitro and in mammary tumors in vivo, promote gene amplification, and synergize with defective apoptosis to accelerate mammary tumorigenesis. Thus, loss of the prosurvival role of autophagy likely contributes to breast cancer progression by promoting genome damage and instability. Exploring the yet unknown relationship between defective autophagy and other breast cancer promoting functions may provide valuable insight into the pathogenesis of breast cancer and may have significant prognostic and therapeutic implications for breast cancer patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号