首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An enzyme which liberates Pi from myo-inositol hexaphosphate (phytic acid) was shown to be present in culture filtrates of Bacillus subtilis. It was purified until it was homogeneous by ultracentrifugation, but it still showed two isozymes on polyacrylamide gel electrophoresis. The enzyme differed from other previously known phytases in its metal requirement and in its specificity for phytate. It had a specific requirement for Ca2+ for its activity. The enzyme hydrolyzed only phytate and had no action on other phosphate esters tested. This B. subtilis phytase is the only known phytate-specific phosphatase. The products of hydrolysis of phytate by this enzyme were Pi and myo-inositol monophosphate. The enzyme showed optimum activity at pH 7.5. It was inhibited by Ba2+, Sr2+, Hg2+, Cd2+, and borate. Its activity was unaffected by urea, diisopropylfluorophosphate, arsenate, fluoride, mercaptoethanol, trypsin, papain, and elastase.  相似文献   

2.
A phytase (EC 3.1.3.8) from Pseudomonas syringae MOK1 was purified to apparent homogeneity in two steps employing cation and an anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The optimal activity occurred at pH 5.5 and 40°C. The Michaelis constant (K m ) and maximum reaction rate (Vmax) for sodium phytate were 0.38 mM and 769 U/mg of protein, respectively. The enzyme was strongly inhibited by Cu2+, Cd2+, Mn2+, and ethylenediaminetetraacetic acid (EDTA). It showed a high substrate specificity for sodium phytate with little or no activity on other phosphate conjugates. The enzyme efficiently released orthophosphate from wheat bran and soybean meal.Received: 9 September 2002 / Accepted: 6 December 2002  相似文献   

3.
Eighty-three isolates from different soil samples exhibited the potential for producing active extracellular phytase. The most active fungal isolate with phytase activity was identified as Penicillium simplicissimum. In shaking culture with enrichment medium, the highest extracellular phytase activity of the producing strain was 3.8 U/mL. The crude enzyme filtrate was purified to homogeneity using ultrafiltration. IEC and gel filtration chromatography. The molar mass of the purified enzyme was estimated to be 65 kDa on SDS-PAGE. The saccharide identification with periodic acid-Schiff reagent (PAS) and activity recognition by 1-naphthyl phosphate was all positive. The isoelectric point of the enzyme, as deduced by isoelectric focusing, was pH 5.8, the optimum pH and temperature being pH 4.0 and 55 degrees C, respectively. The purified enzyme revealed broad substrate specificity and was strongly inhibited by Fe2+, Fe3+ and Zn2+; however, no inhibition was found by EDTA and PMSF. Phytase activity was inhibited when 2 mmol/L of dodecasodium phytate was added and the Km for it was determined to be 813 mmol/L.  相似文献   

4.
Extracellular phytase produced by Aspergillus niger ATCC 9142 was purified to homogeneity by employing an initial ultrafiltration step, followed by chromatography using ion exchange, gel filtration and chromatofocusing steps. The purified enzyme was an 84 kDa, monomeric protein. It possessed a temperature optimum of 65 degrees C, and a pH optimum of 5.0. Km and Vmax values of 100 microM and 7 nmol/s, respectively, were recorded and these values fall well within the range of those previously reported for microbial phytases. Substrate specificity studies indicated that, while the enzyme could hydrolyse a range of non-phytate-based phosphorylated substrates, its preferred substrate was phytate. Phytase activity was moderately stimulated in the presence of Mg2+, Mn2+, Cu2+, Cd2+, Hg2+, Zn2+ and F- ions. Activity was not significantly affected by Fe2- or Fe3- and was moderately inhibited by Ca2+. The enzyme displayed higher thermostability at 80 degrees C than did two commercial phytase products. Initial characterisation of the purified enzyme suggested that it could be a potential candidate for use as an animal feed supplement.  相似文献   

5.
An extracellular endoglucanase (1,4-beta-glucanohydrolase, EC 3.2.1.4) produced by Myceliophthora thermophila D-14 (ATCC 48104) has been purified to homogeneity by ammonium sulphate precipitation and two consecutive ion-exchange chromatographic steps on DEAE-Sephadex A-50 columns. The enzyme was purified 13.8-fold and was homogeneous by analytical PAGE and SDS-PAGE. It has a high apparent Mr, of about 100,000. The pH and temperature optima for its activity were 4.8 and 65 degrees C respectively. The Km of the purified enzyme for CMC (sodium salt) was 3 mg ml-1. The enzyme displayed low activity toward salicin and p-nitrophenyl beta-D-glucoside. The activity was enhanced in the presence of Na+, K+ and Ca2+ but effectively inhibited by Hg2+, Fe2+, Mg2+, Cu2+ and NH4+. Inhibition studies indicated that the enzyme may be a metalloprotein and/or that it requires metal ions for its optimum activity.  相似文献   

6.
Several seeds and husks of some plants belonging to leguminosae, Graminae, Compositae and Palmae were evaluated as carbon substrates to produce α-galactosidase (α-Gal) by the thermophilic fungus, Thielavia terrestris NRRL 8126 in solid substrate fermentation. The results showed that Cicer arietinum (chick pea seed) was the best substrate for α-Gal production. The crude enzyme was precipitated by ammonium sulphate (60%) and purified by gel filtration on sephadex G-100 followed by ion exchange chromatography on DEAE-Cellulose. The final purification fold of the enzyme was 30.42. The temperature and pH optima of purified α-Gal from Thielavia terrestris were 70 °C and 6.5, respectively. The enzyme showed high thermal stability at 70 °C and 75 °C and the half-life of the α-Gal at 90 °C was 45 min. Km of the purified enzyme was 1.31 mM. The purified enzyme was inhibited by Ag2+, Hg2+, Zn2+, Ba2+, Mg2+, Mn2+ and Fe2+ at 5 mM and 10 mM. Also, EDTA, sodium arsenate, L-cysteine and iodoacetate inhibited the enzyme activity. On the other hand, Ca2+, Cu2+, K+ and Na+ slightly enhanced the enzyme activity at 5 mM while at 10 mM they caused inhibition. The molecular weight of the α-Gal was estimated to be 82 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This enzyme displays a number of biochemical properties that make it a potentially strong candidate for biotechnological and medicinal applications.  相似文献   

7.
Two peaks (mPLC-I and mPLC-II) of phosphatidylinositol 4,5-bisphosphate (PIP2)-hydrolyzing activity were resolved when 1% sodium cholate extract from particulate fractions of human platelet was chromatographed on a heparin-Sepharose column. The major peak of enzyme activity (mPLC-II) was purified to homogeneity by a combination of Fast Q-Sepharose, heparin-Sepharose, Ultrogel AcA-44, Mono Q, Superose 6-12 combination column, and Superose 12 column chromatographies. The specific activity increased 2,700-fold as compared with that of the starting particulate fraction. The purified mPLC-II had an estimated molecular weight of 61,000 on sodium dodecyl sulfate-polyacrylamide gels. The minor peak of enzyme activity (mPLC-I) was partially purified to 430-fold. Both enzymes hydrolyzed PIP2 at low Ca2+ concentration (0.1-10 microM) and exhibited higher Vmax for PIP2 than for phosphatidylinositol. PIP2-hydrolyzing activities of both enzymes were enhanced by various detergents and lipids, such as deoxycholate, cholate, phosphatidylethanolamine, and dimyristoylphosphatidylcholine. The mPLC-I and mPLC-II activities were increased by Ca2+, but not by Mg2+, while Hg2+, Fe2+, Cu2+, and La3+ were inhibitory. GTP-binding proteins (Gi, Go, and Ki-ras protein) had no significant effects on the mPLC-II activity.  相似文献   

8.
Purified Aspergillus ficuum phytase's partial primary structure and amino acid and sugar composition were elucidated. Determination of kinetic parameters of the enzyme at different pH values and temperatures indicated no significant alteration of the Km for phytate while the Kcat was affected. The enzyme was able to release more than 51% of the total available Pi from phytate in a 3.0 hr assay at 58 degrees C, but the Kcat dropped to 15% of the initial rate. Substrate selectivity studies revealed phytate to be the preferred substrate. The pH optima of phytase was 5.0, 4.0, and 3.0 for phytate, ATP, and polyphosphate, respectively. The enzyme had varied sensitivity towards cations. While Ca++ and Fe++ produced no effect on the catalytic rate of the enzyme, Cu+, Cu++, Zn++, and Fe were found to be inhibitory. Mn++ was observed to enhance enzyme activity by 33% at 50 microM. Known inhibitors of acid phosphatases e.g. L (+)-tartrate, phosphomycin, and sodium fluoride had no effect on enzyme activity.  相似文献   

9.
A periplasmatic phytate-degrading enzyme from Pantoea agglomerans isolated from soil was purified about 470-fold to apparent homogeneity with a recovery of 16% referred to the phytate-degrading activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 60°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be KM = 0.34 mmol/l and kcat = 21 s-1 at pH 4.5 and 37°C. The enzyme exhibited a narrow substrate selectivity. Only phytate and glucose-1-phosphate were identified as good substrates. Since this Pantoea enzyme has a strong preference for glucose-1-phosphate over phytate, under physiological conditions glucose-1-phosphate is its most likely substrate. The maximum amount of phosphate released from phytate by the purified enzyme suggests myo-inositol pentakisphosphate as the final product of enzymatic phytate degradation.  相似文献   

10.
A strain producing a potent protease was isolated from turban shell. The strain was identified as Bacillus sp. S17110 based on phylogenetic analysis. The enzyme was purified from culture supernatant of Bacillus sp. S17110 to homogeneity by ammonium sulfate precipitation, SP-Sepharose, and DEAE-Sepharose anion exchange chromatography. Protease activity of the purified protein against casein was found to be stable at pH 7 to pH 10 and around 50 degrees . Approximately 70% of proteolytic activity of the enzyme was detected either in the presence of 100 mM SDS or Tween 20. The enzyme activity was enhanced in the presence of Ca2+, Zn2+, Mg2+, but was inhibited by EDTA, indicating that it requires metal for its activity. The purified enzyme was found to be a monomeric protein with a molecular mass of 75 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. The purified enzyme was analyzed through peptide fingerprint mass spectra generated from matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and a BLAST search, and identified as immune inhibitor A (inhA) deduced from nucleotide sequence of B. cereus G9241. Since InhA was identified as protease that cleave antibacterial proteins found in insect, inhA-like protease purified from Bacillus sp. S17110 might be pathogenic to sea invertebrates.  相似文献   

11.
Purification and characterization of histidinol dehydrogenase from cabbage   总被引:3,自引:0,他引:3  
Histidinol dehydrogenase (EC 1.1.1.23) activity was determined in several plant species and in cultured plant cell lines. The enzyme was purified from cabbage (Brassica oleracea) to apparent homogeneity. To render complete purification, a new, specific histidinol-Sepharose 4B affinity chromatography was developed. The apparent molecular mass of the protein is 103 kDa. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein migrated as a single band with a molecular mass of 52 kDa, giving evidence for a dimeric quaternary structure. By isoelectric focusing, the enzyme was separated into six protein bands, five of which possessed the dehydrogenase activity when examined by an activity staining method. The Km values for L-histidinol and NAD+ were 15.5 and 42 microM, respectively. Enzyme activity was stimulated by addition of Mn2+, but was inhibited in the presence of Ba2+, Mg2+, Ni2+, Ca2+, Zn2+, or Cu2+. Histidinol dehydrogenase is the first histidine enzyme that has been purified to homogeneity and characterized from plants. This plant enzyme catalyzes the NAD-linked four-electron dehydrogenase reaction leading from histidinol to His. The results indicate a similar pathway of His in plants and show furthermore the last two reaction steps to be identical to those in microorganisms.  相似文献   

12.
Phytase (myo-inositol hexaphosphate phosphohydrolase) belongs to phosphatases. It catalyzes the hydrolysis of phytate to less-phosphorylated inorganic phosphates and phytate. Phytase is used primarily for the feeding of simple hermit animals in order to increase the usability of amino acids, minerals, phosphorus and energy. In the present study, phytase isolation from the Lactobacillus coryniformis strain, isolated from Lor cheese sources, phytase purification and characterization were studied. The phytase was purified in simple three steps. The enzyme was obtained with 2.60% recovery and a specific activity of 202.25 (EU/mg protein). The molecular mass of the enzyme was determined to be 43.25 kDa with the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. The optimum temperature and pH for the enzyme were found as 60 °C and 5.0 and respectively. To defined the substrate specificity of the phytase, the hydrolysis of several phosphorylated compounds by the purified enzyme was studied and sodium phytate showed high specificity. Furthermore, the effects of Ca2+, Ag+, Mg2+, Cu2+, Co2+, Pb2+, Zn2+ and Ni2+ metal ions on the enzyme were studied.  相似文献   

13.
Wang Y  Gao X  Su Q  Wu W  An L 《Current microbiology》2007,55(1):65-70
A novel thermostable phytase gene was cloned from Aspergillus fumigatus WY-2. It was 1459 bp in size and encoded a polypeptide of 465 amino acids. The gene was expressed in Pichia pastoris GS115 as an extracellular enzyme. The expressed enzyme was purified to homogeneity and biochemically characterized. The purified enzyme had a specific activity of 51 U/mg with an approximate molecular mass of 88 kDa. The optimum pH and temperature for activity were pH 5.5 and 55°C, respectively. After incubation at 90°C for 15 min, it still remained at 43.7% of the initial activity. The enzyme showed higher affinity for sodium phytate than other phosphate conjugates, and the Km and Kcat for sodium phytate were 114 μM and 102 s−1, respectively. Incubated with pepsin at 37°C for 2 h at the ratio (pepsin/phytase, wt/wt) of 0.1, it still retained 90.1% residual activity. These exceptional properties give the newly cloned enzyme good potential in animal feed applications.  相似文献   

14.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

15.
1. Phospholipase D [EC 3.1.4.4] from Streptomyces hachijoensis was purified about 570-fold by column chromatography on DEAE-cellulose and Sephadex G-50 followed by isoelectric focusing. 2. The purified preparation was found to be homogeneous both by immunodiffusion and polyacrylamide disc gel electrophoresis. 3. The isoelectric point was found to be around pH 8.6 and the molecular weight was about 16,000. 4. The enzyme has maximal activity at pH 7.5 at 37 degrees. The optimal temperature is around 50 degrees at pH 7.5, using 20 min incubation. 5. The enzyme was stable at 50 degrees for 90 min. At neutral pH, between 6 and 8, the enzyme retained more than 95% of its activity on 24 hr incubation at 25 degrees. However, the enzyme lost 80% of its activity under the same conditions at pH 4.0. 6. The enzyme was stimulated slightly by Ca2+, Mn2+, and Co2+, and significantly by Triton X-100 and ethyl ether. It was inhibited by Sn2+, Fe2+, Fe3+, Al3+, EDTA, sodium dodecyl sulfate, sodium cholate, and cetylpyridinium chloride. 7. This phospholipase D hydrolyzes phosphatidylethanolamine, phosphatidylcholine, cardiolipin, sphingomyelin, phosphatidylserine, and lysophosphatidylcholine, liberating the corresponding bases. 8. The Km value was 4mM, determined with phosphatidylethanolamine as a substrate.  相似文献   

16.
Thermostable amylolytic enzymes are currently being investigated to improve industrial processes of starch degradation. A thermostable extracellular glucoamylase (exo-1, 4-alpha-D-glucanohydrolase, E.C.3.2.1.3) from the culture supernatant of a thermophilic fungus Chaetomium thermophilum was purified to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) homogeneity by using ammonium sulfate fraction, DEAE-Sepharose Fast Flow chromatography, and Phenyl-Sepharose Fast Flow chromatography. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 64 kDa. The glucoamylase exhibited optimum catalytic activity at pH 4.0 and 65 degrees C. It was thermostable at 50 degrees C and 60 degrees C, and retained 50% activity after 60 min at 65 degrees C. The half-life of the enzyme at 70 degrees C was 20 min. N-terminal amino acid sequencing (15 residues) was AVDSYIERETPIAWN. Different metal ions showed different effects on the glucoamylase activity. Ca2+, Mg2+, Na+, and K+ enhanced the enzyme activity, whereas Fe2+, Ag+, and Hg2+ cause obvious inhibition. These properties make it applicable to other biotechnological purposes.  相似文献   

17.
Uroporphyrinogen III synthase (hydroxymethylbilane hydro-lyase (cyclizing); EC 4.2.1.75), the fourth enzyme in the heme biosynthetic pathway, was purified to homogeneity from human erythrocytes. For enzyme purification and characterization, a sensitive coupled enzyme assay was used which generated the substrate, hydroxymethylbilane; the oxidized product, uroporphyrin III, was quantitated by high pressure liquid chromatography. Uroporphyrinogen III synthase was initially separated from delta-aminolevulinate dehydratase and hydroxymethylbilane synthase by a preparative anion exchange chromatographic step. Subsequent chromatography on hydroxyapatite, phenyl-Sepharose, and Sephadex G-100 purified the enzyme about 70,000-fold with an 8% yield. Homogeneous enzyme was obtained following a final C4-reversed phase high pressure liquid chromatographic step which removed a single major and several minor protein contaminants from the enzyme. The purified enzyme had a specific activity of over 300,000 units/mg, an isoelectric point of 5.5, and was thermolabile (t1/2 at 60 degrees C approximately 1 min). Molecular weight studies by gel filtration (Mr approximately equal to 30,000) and analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr approximately equal to 29,500) were consistent with the enzyme being a monomer. Using hydroxymethylbilane as substrate, the purified enzyme formed uroporphyrinogen III in the absence of hydroxymethylbilane synthase or other cofactors. The pH optimum was 7.4 and the Km for hydroxymethylbilane was 5-20 microM. The enzyme was activated by Na+, K+, Mg+, and Ca2+ and was inhibited by Cd2+, Cu2+, Hg2+, and Zn2+. Amino acid composition analysis was performed, and the N-terminal sequence, Met-Lys-Val-Leu-Leu-Leu, was determined by microsequencing. The availability of the purified enzyme should permit investigation of its reaction mechanism as well as facilitate biochemical and molecular studies of the genetic defect in congenital erythropoietic porphyria.  相似文献   

18.
A periplasmatic phytase from a bacterium isolated from Malaysian waste water was purified about 173-fold to apparent homogeneity with a recovery of 10% referred to the phytase activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 65°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be K M = 0.15 mmol/l and k cat = 1164 s−1 at pH 4.5 and 37°C. The purified enzyme was shown to be highly specific. Among the phosphorylated compounds tested, phytate was the only one which was significantly hydrolysed. Some properties such as considerable activity below pH 3.0, thermal stability and resistance to pepsin make the enzyme attractive for an application as a feed supplement.  相似文献   

19.
D-Ribose isomerase, which catalyzes the conversion of D-ribose to D-ribulose, was purified from extracts of Mycobacterium smegmatis grown on D-ribose. The purified enzyme crystalized as hexagonal plates from a 44% solution of ammonium sulfate. The enzyme was homogenous by disc gel electrophoresis and ultracentrifugal analysis. The molecular weight of the enzyme was between 145,000 and 174,000 by sedimentation equilibrium analysis. Its sedimentation constant of 8.7 S indicates it is globular. On the basis of sodium dodecyl sulfate gel electrophoresis in the presence of Mn2+, the enzyme is probably composed of 4 identical subunits of molecular weight about 42,000 to 44,000. The enzyme was specific for sugars having the same configuration as D-ribose at carbon atoms 1 to 3. Thus, the enzyme could also utilize L-lyxose, D-allose, and L-rhamnose as substrates. The Km for D-ribose was 4 mM and for L-lyxose it was 5.3 mM. The enzyme required a divalent cation for activity with optimum activity being shown with Mn2+. the Km for the various cations was as follows: Mn2+, 1 times 10(-7) M, Co2+, 4 times 10(-7) M, and Mg2+, 1.8 times 10(-5) M. The pH optimum for the enzyme was 7.5 to 8.5. Polyols did not inhibit the enzyme to any great extent. The product of the reaction was identified as D-ribulose by thin layer chromatography and by preparation of the O-nitrophenylhydrazone derivative.  相似文献   

20.
Protoplasts of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 were prepared using cellulose and snail enzyme with 0.6 M NaCl as osmotic stabilizer. Protoplast fusion has been performed using 35% polyethylene glycol 4.000 with 0.01 mM CaCl2. The fused protoplasts have been regenerated on regeneration medium and fusants were selected for further studies. An intracellular beta-glucosidase (EC 3.2.1.21) was purified from the protoplast fusant of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 and characterized. The enzyme was purified 138.85-fold by ammonium sulphate precipitation, DE-22 ion exchange and Sephadex G-150 gel filtration chromatography with a specific activity of 297.14 U/mg of protein. The molecular mass of the purified enzyme was determined to be about 125 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme had an optimum pH of 5.4 and temperature of 65 degrees C, respectively. This enzyme showed relatively high stability against pH and temperature and was stable in the pH range of 3.0-6.6. Na+, K+, Ca2+, Mg2+ and EDTA completely inhibited the enzyme activity at a concentration of 10 mM. The enzyme activity was accelerated by Fe3+. The enzyme activity was strongly inhibited by glucose, the end product ofglucoside hydrolysis. The K(m) and V(max) values against salicin as substrate were 0.035 mM and 1.7215 micromol min(-1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号