首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins require proper conformational energetics to fold and to function correctly. Despite the importance of having information on conformational energetics, the investigation of thermodynamic stability has been limited to proteins, which can be easily expressed and purified. Many biologically important proteins are not suitable for conventional biophysical investigation because of the difficulty of expression and purification. As an effort to overcome this limitation, we have developed a method to determine the thermodynamic stability of low abundant proteins in cell lysates. Previously, it was demonstrated that protein stability can be determined quantitatively by measuring the fraction of folded proteins with a pulse of proteolysis (Pulse proteolysis). Here, we show that thermodynamic stability of low abundant proteins can be determined reliably in cell lysates by combining pulse proteolysis with quantitative Western blotting (Pulse and Western). To demonstrate the reliability of this method, we determined the thermodynamic stability of recombinant human H‐ras added to lysates of E. coli and human Jurkat T cells. Comparison with the thermodynamic stability determined with pure H‐ras revealed that Pulse and Western is a reliable way to monitor protein stability in cell lysates and the stability of H‐ras is not affected by other proteins present in cell lysates. This method allows the investigation of conformational energetics of proteins in cell lysates without cloning, purification, or labeling.  相似文献   

2.
Investigation of protein unfolding kinetics of proteins in crude samples may provide many exciting opportunities to study protein energetics under unconventional conditions. As an effort to develop a method with this capability, we employed “pulse proteolysis” to investigate protein unfolding kinetics. Pulse proteolysis has been shown to be an effective and facile method to determine global stability of proteins by exploiting the difference in proteolytic susceptibilities between folded and unfolded proteins. Electrophoretic separation after proteolysis allows monitoring protein unfolding without protein purification. We employed pulse proteolysis to determine unfolding kinetics of E. coli maltose binding protein (MBP) and E. coli ribonuclease H (RNase H). The unfolding kinetic constants determined by pulse proteolysis are in good agreement with those determined by circular dichroism. We then determined an unfolding kinetic constant of overexpressed MBP in a cell lysate. An accurate unfolding kinetic constant was successfully determined with the unpurified MBP. Also, we investigated the effect of ligand binding on unfolding kinetics of MBP using pulse proteolysis. On the basis of a kinetic model for unfolding of MBP•maltose complex, we have determined the dissociation equilibrium constant (Kd) of the complex from unfolding kinetic constants, which is also in good agreement with known Kd values of the complex. These results clearly demonstrate the feasibility and the accuracy of pulse proteolysis as a quantitative probe to investigate protein unfolding kinetics.  相似文献   

3.
Transient partial unfolding of proteins under native conditions may have significant consequences in the biochemical and biophysical properties of proteins. Native-state proteolysis offers a facile way to investigate the thermodynamic and kinetic accessibilities of partially unfolded forms (cleavable forms) under native conditions. However, determination of the structure of the cleavable form, which is populated only transiently, remains challenging. Although in some cases partially cleaved products from proteolysis provide information on the structure of this elusive form, proteolysis of many proteins does not accumulate detectable intermediates. Here, we describe a systematic approach to determining structures of cleavable forms by protein engineering and native-state proteolysis. By devising φc analysis, which is analogous to conventional φ analysis, we have determined the structure of the cleavable form of Escherichia coli maltose-binding protein (MBP), which does not accumulate any partially cleaved products. We mutated 10 buried residues in MBP to alanine and determined φc values from the effects of the mutations on global stability and proteolytic susceptibility. The result of this analysis suggests that two C-terminal helices in MBP are unfolded in their cleavable form. The effect of ligand binding on proteolytic susceptibility and C-terminal deletion mutations also confirms the proposed structure. Our approach and methodology are generally applicable not only in elucidating the mechanism of proteolysis but also in investigating other important processes involving partial unfolding under native conditions such as protein misfolding and aggregation.  相似文献   

4.
Interaction of delta-endotoxin and its proteolytic fragments with phospholipid vesicles was studied using electron microscopy, scanning microcalorimetry, and limited proteolysis. It was shown that native protein destroys liposomes. The removal of 4 N-terminal alpha-helices and the extreme 56 C-terminal amino acid residues did not affect this ability. The results obtained by limited proteolysis of delta-endotoxin bound to lipid vesicles show essential conformational changes in three or four N-terminal helices and in the C-terminal region. The calorimetric method used in this study provides a unique possibility for the validation of existing models of protein binding and for a more accurate determination of the regions where conformational changes take place. It was found that the binding of the protein to model liposomes does not alter its structure in the regions starting with the fourth alpha-helix of domain I. This can be concluded from the fact that the activation energy of denaturation of the protein remains unchanged upon its binding to the phospholipid membranes. A new structural model has been proposed which agrees with the data obtained.  相似文献   

5.
Biochemical functions of proteins in cells frequently involve interactions with various ligands. Proteomic methods for the identification of proteins that interact with specific ligands such as metabolites, signaling molecules, and drugs are valuable in investigating the regulatory mechanisms of cellular metabolism, annotating proteins with unknown functions, and elucidating pharmacological mechanisms. Here we report an energetics-based target identification method in which target proteins in a cell lysate are identified by exploiting the effect of ligand binding on their stabilities. Urea-induced unfolding of proteins in cell lysates is probed by a short pulse of proteolysis, and the effect of a ligand on the amount of folded protein remaining is monitored on a proteomic scale. As proof of principle, we identified proteins that interact with ATP in the Escherichia coli proteome. Literature and database mining confirmed that a majority of the identified proteins are indeed ATP-binding proteins. Four identified proteins that were previously not known to interact with ATP were cloned and expressed to validate the result. Except for one protein, the effects of ATP on urea-induced unfolding were confirmed. Analyses of the protein sequences and structure models were also employed to predict potential ATP binding sites in the identified proteins. Our results demonstrate that this energetics-based target identification approach is a facile method to identify proteins that interact with specific ligands on a proteomic scale.  相似文献   

6.
Archaea are a valuable source of enzymes for industrial and scientific applications because of their ability to survive extreme conditions including high salt and temperature. Thanks to advances in molecular biology and genetics, archaea are also attractive hosts for metabolic engineering. Understanding how energy-dependent proteases and chaperones function to maintain protein quality control is key to high-level synthesis of recombinant products. In archaea, proteasomes are central players in energy-dependent proteolysis and form elaborate nanocompartments that degrade proteins into oligopeptides by processive hydrolysis. The catalytic core responsible for this proteolytic activity is the 20S proteasome, a barrel-shaped particle with a central channel and axial gates on each end that limit substrate access to a central proteolytic chamber. AAA proteins (ATPases associated with various cellular activities) are likely to play several roles in mediating energy-dependent proteolysis by the proteasome. These include ATP binding/hydrolysis, substrate binding/unfolding, opening of the axial gates, and translocation of substrate into the proteolytic chamber.  相似文献   

7.
Simplified proteomics approach to discover protein-ligand interactions   总被引:1,自引:0,他引:1  
Identifying targets of biologically active small molecules is an essential but still challenging task in drug research and chemical genetics. Energetics-based target identification is an approach that utilizes the change in the conformational stabilities of proteins upon ligand binding in order to identify target proteins. Different from traditional affinity-based capture approaches, energetics-based methods do not require any labeling or immobilization of the test molecule. Here, we report a surprisingly simple version of energetics-based target identification, which only requires ion exchange chromatography, SDS PAGE, and minimal use of mass spectrometry. The complexity of a proteome is reduced through fractionation by ion exchange chromatography. Urea-induced unfolding of proteins in each fraction is then monitored by the significant increase in proteolytic susceptibility upon unfolding in the presence and the absence of a ligand. Proteins showing a different degree of unfolding with the ligand are identified by SDS PAGE followed by mass spectrometry. Using this approach, we identified ATP-binding proteins in the Escherichia coli proteome. In addition to known ATP-binding proteins, we also identified a number of proteins that were not previously known to interact with ATP. To validate one such finding, we cloned and purified phosphoglyceromutase, which was not previously known to bind ATP, and confirmed that ATP indeed stabilizes this protein. The combination of fractionation and pulse proteolysis offers an opportunity to investigate protein-drug or protein-metabolite interactions on a proteomic scale with minimal instrumentation and without modification of a molecule of interest.  相似文献   

8.
The conformational energy landscape of a protein determines populations of all possible conformations of the protein and also determines the kinetics of the conversion between the conformations. Interaction with ligands influences the conformational energy landscapes of proteins and shifts populations of proteins in different conformational states. To investigate the effect of ligand binding on partial unfolding of a protein, we use Escherichia coli dihydrofolate reductase (DHFR) and its functional ligand NADP+ as a model system. We previously identified a partially unfolded form of DHFR that is populated under native conditions. In this report, we determined the free energy for partial unfolding of DHFR at varying concentrations of NADP+ and found that NADP+ binds to the partially unfolded form as well as the native form. DHFR unfolds partially without releasing the ligand, though the binding affinity for NADP+ is diminished upon partial unfolding. Based on known crystallographic structures of NADP+‐bound DHFR and the model of the partially unfolded protein we previously determined, we propose that the adenosine‐binding domain of DHFR remains folded in the partially unfolded form and interacts with the adenosine moiety of NADP+. Our result demonstrates that ligand binding may affect the conformational free energy of not only native forms but also high‐energy non‐native forms.  相似文献   

9.
Limited proteolysis experiments can be successfully used to probe conformational features of proteins. In a number of studies it has been demonstrated that the sites of limited proteolysis along the polypeptide chain of a protein are characterized by enhanced backbone flexibility, implying that proteolytic probes can pinpoint the sites of local unfolding in a protein chain. Limited proteolysis was used to analyze the partly folded (molten globule) states of several proteins, such as apomyoglobin, alpha-lactalbumin, calcium-binding lysozymes, cytochrome c and human growth hormone. These proteins were induced to acquire the molten globule state under specific solvent conditions, such as low pH. In general, the protein conformational features deduced from limited proteolysis experiments nicely correlate with those deriving from other biophysical and spectroscopic techniques. Limited proteolysis is also most useful for isolating protein fragments that can fold autonomously and thus behave as protein domains. Moreover, the technique can be used to identify and prepare protein fragments that are able to associate into a native-like and often functional protein complex. Overall, our results underscore the utility of the limited proteolysis approach for unravelling molecular features of proteins and appear to prompt its systematic use as a simple first step in the elucidation of structure-dynamics-function relationships of a novel and rare protein, especially if available in minute amounts.  相似文献   

10.
R J Grand  M L Grant 《FEBS letters》1989,253(1-2):281-286
Variations in susceptibility to proteolysis by trypsin and chymotrypsin have been used as indicators of conformational changes taking place in N-ras p21 in response to ligand binding. It has been observed that changes occur in undenatured protein, rendering it more resistant to degradation, in the presence of divalent cations such as Mg2+ and Ca2+ (suggesting direct binding of metals to the polypeptide) and even more markedly in the presence of GDP and/or Mg2+ GDP. Monovalent cations (Na+ or K+) cannot substitute for Mg2+ or Ca2+. Some capacity to bind guanine nucleotide is also retained by p21 treated with 7 M urea, as evidenced by increased resistance to proteolytic degradation, but the ability to bind divalent cations is irreversibly lost following denaturation. Protein prepared under denaturing conditions from a eukaryotic source, however, never regains the resistance to proteolysis shown by the bacterial p21 indicating irreversible changes in secondary and tertiary structure produced under these conditions.  相似文献   

11.
A theoretical approach for estimating association free energies of alpha-helices in nonpolar media has been developed. The parameters of energy functions have been derived from DeltaDeltaG values of mutants in water-soluble proteins and partitioning of organic solutes between water and nonpolar solvents. The proposed approach was verified successfully against three sets of published data: (1) dissociation constants of alpha-helical oligomers formed by 27 hydrophobic peptides; (2) stabilities of 22 bacteriorhodopsin mutants, and (3) protein-ligand binding affinities in aqueous solution. It has been found that coalescence of helices is driven exclusively by van der Waals interactions and H-bonds, whereas the principal destabilizing contributions are represented by side-chain conformational entropy and transfer energy of atoms from a detergent or lipid to the protein interior. Electrostatic interactions of alpha-helices were relatively weak but important for reproducing the experimental data. Immobilization free energy, which originates from restricting rotational and translational rigid-body movements of molecules during their association, was found to be less than 1 kcal/mole. The energetics of amino acid substitutions in bacteriorhodopsin was complicated by specific binding of lipid and water molecules to cavities created in certain mutants.  相似文献   

12.
Previous analyses of limited proteolytic sites within native, folded protein structures have shown that a significant conformational change is required in order to facilitate binding into the active site of the attacking proteinase. For the serine proteinases, the optimum conformation to match the proteinase binding-site geometry has been well characterized crystallographically by the conserved main-chain geometry of the reactive site loops of their protein inhibitors. A good substrate must adopt a conformation very similar to this "target" main-chain conformation prior to cleavage. Using a "loop-closure" modeling approach, we have tested the ability of a set of tryptic-limited proteolytic sites to achieve this target conformation and further tested their suitability for cleavage. The results show that in most cases, significant changes in the conformation of at least 12 residues are required. All the putative tryptic cleavage sites in 1 protein, elastase, were also modeled and tested to compare the results to the actual nicksite in that protein. These results strongly suggest that large local motions proximate to the scissile bond are required for proteolysis, and it is this ability to unfold locally without perturbing the overall protein conformation that is the prime determinant for limited proteolysis.  相似文献   

13.
Interaction of uncoupling reagents with bovine serum albumin markedly inhibited its hydrolysis by proteolytic enzymes. The inhibition presumably is due to conformational transitions in the protein substrate induced by the binding of the ligand-uncoupling reagents. The proteolysis of casein, a protein that does not bind these reagents, was not affected, indicating that the proteinases themselves were not inactivated. In contrast, interaction of uncoupling reagents with freshly isolated rat liver mitochondria enhanced their susceptibility to proteolytic enzymes. This was shown by an increase in the release of ninhydrin-reacting material, by an increase in free acid groups and by a decrease in the turbidity of the mitochondrial suspensions. These effects, although opposite in direction to those obtained with albumin, are also presumed to indicate structural changes in the mitochondrial proteins and a disorganization of the protein-phospholipid complex. It is suggested that such structural alterations are expressed functionally as the uncoupling of oxidative phosphorylation.  相似文献   

14.
Licht S  Lee I 《Biochemistry》2008,47(12):3595-3605
Clp, Lon, and FtsH proteases are proteolytic molecular machines that use the free energy of ATP hydrolysis to unfold protein substrates and processively present them to protease active sites. Here we review recent biochemical and structural studies relevant to the mechanism of ATP-dependent processive proteolysis. Despite the significant structural differences among the Clp, Lon, and FtsH proteases, these enzymes share important mechanistic features. In these systems, mechanistic studies have provided evidence for ATP binding and hydrolysis-driven conformational changes that drive translocation of substrates, which has significant implications for the processive mechanism of proteolysis. These studies indicate that the nucleotide (ATP, ADP, or nonhydrolyzable ATP analogues) occupancy of the ATPase binding sites can influence the binding mode and/or binding affinity for protein substrates. A general mechanism is proposed in which the communication between ATPase active sites and protein substrate binding regions coordinates a processive cycle of substrate binding, translocation, proteolysis, and product release.  相似文献   

15.
We present a novel multi‐level methodology to explore and characterize the low energy landscape and the thermodynamics of proteins. Traditional conformational search methods typically explore only a small portion of the conformational space of proteins and are hard to apply to large proteins due to the large amount of calculations required. In our multi‐scale approach, we first provide an initial characterization of the equilibrium state ensemble of a protein using an efficient computational conformational sampling method. We then enrich the obtained ensemble by performing short Molecular Dynamics (MD) simulations on selected conformations from the ensembles as starting points. To facilitate the analysis of the results, we project the resulting conformations on a low‐dimensional landscape to efficiently focus on important interactions and examine low energy regions. This methodology provides a more extensive sampling of the low energy landscape than an MD simulation starting from a single crystal structure as it explores multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of proteins and it can help in understanding complex binding, improving docking results and more. In this work, we apply the methodology to provide an extensive characterization of the bound complexes of the C3d fragment of human Complement component C3 and one of its powerful bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra‐cellular fibrinogen‐binding domain (Efb‐C) and two of its mutants. We characterize several important interactions along the binding interface and define low free energy regions in the three complexes. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
A strategy for identifying and characterizing protein interactions among gel-separated proteins and complexes has been developed and tested. The method involves the efficient recovery of proteins or complexes from native gels without affecting their conformational integrity. The use of limited proteolysis of protein complexes, isolated from the gel or formed from the interaction of gel-recovered proteins with potential binding partners, has enabled local binding domains to be efficiently identified using a combination of microfiltration and mass spectrometric analysis. The application of mass spectrometry affords high detection sensitivities, enabling the strategy to be applied to low levels of protein and protein mixtures. The approach is demonstrated for both antigen-antibody and peptide-protein complexes for which protein-binding regions are characterized among simple peptide mixtures and proteolytic digests. The strategy can be easily adapted to achieve high sample throughput and automation using gel-excision robotics and provides a means to study protein interactions in complex biological mixtures and extracts.  相似文献   

17.
Determining the energetics of the unfolded state of a protein is essential for understanding the folding mechanics of ordered proteins and the structure–function relation of intrinsically disordered proteins. Here, we adopt a coil‐globule transition theory to develop a general scheme to extract interaction and free energy information from single‐molecule fluorescence resonance energy transfer spectroscopy. By combining protein stability data, we have determined the free energy difference between the native state and the maximally collapsed denatured state in a number of systems, providing insight on the specific/nonspecific interactions in protein folding. Both the transfer and binding models of the denaturant effects are demonstrated to account for the revealed linear dependence of inter‐residue interactions on the denaturant concentration, and are thus compatible under the coil‐globule transition theory to further determine the dimension and free energy of the conformational ensemble of the unfolded state. The scaling behaviors and the effective θ‐state are also discussed.  相似文献   

18.
Park C  Marqusee S 《Nature methods》2005,2(3):207-212
Thermodynamic stability is fundamental to the biology of proteins. Information on protein stability is essential for studying protein structure and folding and can also be used indirectly to monitor protein-ligand or protein-protein interactions. While clearly valuable, the experimental determination of a protein's stability typically requires biophysical instrumentation and substantial quantities of purified protein, which has limited the use of this technique as a general laboratory method. We report here a simple new method for determining protein stability by using pulse proteolysis with varying concentrations of denaturant. Pulse proteolysis is designed to digest only the unfolded proteins in an equilibrium mixture of folded and unfolded proteins that relaxes on a time scale longer than the proteolytic pulse. We used this method to study the stabilities of Escherichia coli ribonuclease H and its variants, both in purified form and directly from cell lysates. The DeltaG(unf) degrees values obtained by this technique were in agreement with those determined by traditional methods. We also successfully used this method to monitor the binding of maltose-binding protein to maltose, as well as to rapidly screen cognate ligands for this protein. The simplicity of pulse proteolysis suggests that it is an excellent strategy for the high-throughput determination of protein stability in protein engineering and drug discovery applications.  相似文献   

19.
20.
The analysis of conformational transitions using limited proteolysis was carried out on a hyperthermophilic aspartate aminotransferase isolated from the archaebacterium Sulfolobus solfataricus, in comparison with pig cytosolic aspartate aminotransferase, a thoroughly studied mesophilic aminotransferase which shares about 15% similarity with the archaebacterial protein. Aspartate aminotransferase from S. solfataricus is cleaved at residue 28 by thermolysin and residues 32 and 33 by trypsin; analogously, pig heart cytosolic aspartate aminotransferase is cleaved at residues 19 and 25 [Iriarte, A., Hubert, E., Kraft, K. & Martinez-Carrion, M. (1984) J. Biol. Chem. 259, 723-728] by trypsin. In the case of aspartate aminotransferase from S. solfataricus, proteolytic cleavages also result in transaminase inactivation thus indicating that both enzymes, although evolutionarily distinct, possess a region involved in catalysis and well exposed to proteases which is similarly positioned in their primary structure. It has been reported that the binding of substrates induces a conformational transition in aspartate aminotransferases and protects the enzymes against proteolysis [Gehring, H. (1985) in Transaminases (Christen, P. & Metzler, D. E., eds) pp. 323-326, John Wiley & Sons, New York]. Aspartate aminotransferase from S. solfataricus is protected against proteolysis by substrates, but only at high temperatures (greater than 60 degrees C). To explain this behaviour, the kinetics of inactivation caused by thermolysin were measured in the temperature range 25-75 degrees C. The Arrhenius plot of the proteolytic kinetic constants measured in the absence of substrates is not rectilinear, while the same plot of the constants measured in the presence of substrates is a straight line. Limited proteolysis experiments suggest that aspartate aminotransferase from S. solfataricus undergoes a conformational transition induced by the binding of substrates. Another conformational transition which depends on temperature and occurs in the absence of substrates could explain the non-linear Arrhenius plot of the proteolytic kinetic constants. The latter conformational transition might also be related to the functioning of the archaebacterial aminotransferase since the Arrhenius plot of kcat is non-linear as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号