首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Four mutant PC12 pheochromocytoma cell lines that are nerve growth factor (NGF)-nonresponsive (PC12nnr) have been selected from chemically mutagenized cultures by a double selection procedure: failure both to grow neurites in the presence of NGF and to survive in NGF-supplemented serum-free medium. The PC12nnr cells were deficient in all additional NGF responses surveyed: abatement of cell proliferation, changes in glycoprotein composition, induction of ornithine decarboxylase, rapid changes in protein phosphorylation, and cell surface ruffling. However, PC12nnr cells closely resembled non-NGF-treated PC12 cells in most properties tested: cell size and shape; division rate; protein, phosphoprotein, and glycoprotein composition; and cell surface morphology. All four PC12nnr lines differed from PC12 cells in three ways in addition to failure of NGF response: PC12nnr cells failed to internalize bound NGF by the normal, saturable, high-affinity mechanism present in PC12 cells. The PC12nnr cells bound NGF but entirely, or nearly entirely, at low-affinity sites only, whereas PC12 cells possess both high- and low-affinity NGF binding sites. The responses to dibutyryl cyclic AMP that were tested appeared to be enhanced or altered in the PC12nnr cells compared to PC12 cells. Internalization of, and responses to, epidermal growth factor were normal in the PC12nnr cells ruling out a generalized defect in hormonal binding, uptake, or response mechanisms. These findings are consistent with a causal association between the presence of high-affinity NGF receptors and of NGF responsiveness and internalization. A possible relationship is also suggested between regulation of cAMP responses and regulation of NGF responses or NGF receptor affinity.  相似文献   

3.
Nerve growth factor (NGF) has been shown to increase cyclic AMP in PC12 cells and to potentiate the actions of other agents that raise cyclic AMP. In our studies, NGF causes over 50% loss of PDE 2 activity (cyclic GMP-stimulated cyclic nucleotide phosphodiesterase) in PC12 cells within 24 h. After 72 h of NGF treatment, cyclic AMP hydrolysis in PC12 extracts is no longer cyclic GMP-stimulated. NGF deprivation increases the phosphodiesterase activity of treated cells. NGF does not decrease either PDE 2 mRNA or immunoreactivity of PDE 2A2 protein. Incubation of whole cells with micromolar Na(3)VO(4) mimics NGF treatment, reducing PDE 2 activity in PC12 cells by over 50% after 24 h, suggesting a phosphoprotein-mediated regulation of PDE 2 activity. Protein kinase inhibitor effects were difficult to assess due to their direct interaction with the PDE in cell lysates. To study phosphorylation in PDE 2 regulation, PDE 2A2 was epitope-tagged, and stable clonal PC12 cell transfectants were isolated (PC12B cells). When combined with metabolically labeled (32)P-phosphoproteins in vivo or in vitro, phosphoproteins of 108, 90, 64, 43, 33 and 19 kDa coprecipitated with epitope-tagged PDE 2A2 in an NGF sensitive manner. A 23-kDa phosphoprotein containing immunoreactive phosphoserine associated with the complex in an NGF independent manner. Phosphothreonine plus phosphotyrosine immunoreactivity at 23, 24, and 64 kDa as well as the phosphotyrosine immunoreactivity at 108, 90, 64, 43, 33, and 19 kDa required NGF or orthovanadate treatment. These proteins are hypothesized to be part of an NGF-regulated complex controlling PDE 2A2 activity.  相似文献   

4.
Nerve growth factor (NGF) induced the activities of acetylcholinesterase (AChE) and Na+,K+-ATPase concomitant with neurite outgrowth in PC12h cells, while dibutyryl cyclic AMP (DBcAMP) caused the induction of AChE activity and neurite outgrowth but not Na+,K+-ATPase activity. A nonproteinaceous extract isolated from the inflamed skin of rabbits inoculated with vaccinia virus (Neurotropin) induced neurite outgrowth and cell surface change similar to NGF without affecting AChE activity. The results suggest that NGF, DBcAMP and Neurotropin act on PC12h cells through different mechanisms.  相似文献   

5.
The rat pheochromocytoma cell line PC12 can be induced to differentiate in response to nerve growth factor (NGF) in the presence of 1% fetal calf serum (FCS). Using a novel assay procedure we have developed a purification protocol which has allowed the isolation of the protein in serum responsible for neurite outgrowth after NGF treatment. FCS has been fractionated using four chromatographic procedures and in each case the peak of biological activity copurified with vitronectin. We have concluded, therefore, that vitronectin is the protein present in FCS which can mediate NGF-dependent neurite outgrowth in PC12 cells. Vitronectin and fibronectin from FCS have been chromatographically separated and only the former is capable of inducing neurite outgrowth. We have also shown that vitronectin utilizes the RGD amino acid sequence in binding to the surface of PC12s.  相似文献   

6.
PC12 cells exhibit precise temporal control of growth factor signaling in which stimulation with epidermal growth factor (EGF) leads to transient extracellular signal-regulated kinase (ERK) activity and cell proliferation, whereas nerve growth factor (NGF) stimulation leads to sustained ERK activity and differentiation. While cyclic AMP (cAMP)-mediated signaling has been shown to be important in conferring the sustained ERK activity achieved by NGF, little is known about the regulation of cAMP and cAMP-dependent protein kinase (PKA) in these cells. Using fluorescence resonance energy transfer (FRET)-based biosensors localized to discrete subcellular locations, we showed that both NGF and EGF potently activate PKA at the plasma membrane, although they generate temporally distinct activity patterns. We further show that both stimuli fail to induce cytosolic PKA activity and identify phosphodiesterase 3 (PDE3) as a critical regulator in maintaining this spatial compartmentalization. Importantly, inhibition of PDE3, and thus perturbation of the spatiotemporal regulation of PKA activity, dramatically increases the duration of EGF-stimulated nuclear ERK activity in a PKA-dependent manner. Together, these findings identify EGF and NGF as potent activators of PKA activity specifically at the plasma membrane and reveal a novel regulatory mechanism contributing to the growth factor signaling specificity achieved by NGF and EGF in PC12 cells.  相似文献   

7.
The relative expression of the immunoglobulin superfamily members Thy-1 and L1 and the neural cell adhesion molecule (N-CAM) in PC12 cells grown in the presence of nerve growth factor (NGF), cholera toxin, or both has been quantified. Whereas NGF treatment induced increases in the cell surface expression of all three glycoproteins, treatment with cholera toxin resulted in the specific induction of L1. During the first few days of culture, cholera toxin acted synergistically with NGF to promote increases in neuritic outgrowth and the synthesis and cell surface accumulation of the 140- and 180-kilodalton subunits of N-CAM. In contrast, over the same period of culture, cholera toxin inhibited the NGF induction of Thy-1 and L1. Over longer periods of culture (3-5 days), cholera toxin inhibited the NGF induction of N-CAM and neurite outgrowth. A similar pattern of synergistic and inhibitory responses was observed when differentiation was induced by fibroblast growth factor (FGF) rather than NGF or when cholera toxin was replaced with forskolin. These data suggest that intracellular cyclic AMP can differentially modulate cell surface glycoprotein expression induced by either NGF or FGF. Of the three cell surface glycoproteins we have studied, temporal changes in N-CAM expression correlate best with the morphological differentiation status of PC12 cells.  相似文献   

8.
We present evidence that the survival of PC12 cells exposed to hydroxyl radicals generated by hydrogen peroxide applied for 30 min at 1 mM was effective when they were differentiated in response to Nerve Growth Factor (NGF) and/or other inducers of neurite outgrowth such as basic-fibroblast growth factor and dibutyryl cyclic AMP. The time- and dose-dependent differentiation triggered by NGF was (1) markedly increased by basic fibroblast growth factor, interleukin-6 or dibutyryl cyclic AMP; (2) diminished by leukemia inhibitory factor or ciliary neurotrophic factor; (3) not potentiated by insulin-like growth factor I or progesterone. The influence of these various factors and agents on PC12 cells was evaluated by the estimation of neurite outgrowth, whereas their possible protective effects were assessed by the measurement of cell survival. Our results would indicate that the factors and agents that induced differentiation were also able to protect the cells against an oxidative stress.  相似文献   

9.
Changes in distribution of adenylate cyclase in PC 12 cells under the influence of nerve growth factor (NGF) have been studied using cytochemical methods. The adenylate cyclase activity was predominantly associated with the plasma membrane. In cell cultures without NGF the activity was revealed on the contacting surfaces of cell aggregates; single grains of reaction product were revealed on exposed cell surface only in cultures with a high cell density. One day after administration of NGF, the adenylate cyclase activity on exposed cell surface increased, and three days later the whole cell surface was covered with lead sediment. The enzyme activity was also revealed in growth cones, filopodia and microcytospheres. The role of adenydlate cyclase system in neuron-like differentiation of PC 12 cells is discussed.  相似文献   

10.
Multiple Pathways of N-Kinase Activation in PC12 Cells   总被引:3,自引:3,他引:0  
Past work established a cell-free assay for a nerve growth factor (NGF)-activated protein kinase activity (designated N-kinase) that utilizes tyrosine hydroxylase and histone H1 as substrates and that is distinct from a variety of well-characterized kinases. This study explores the specificity and mechanistic pathway(s) by which N-kinase activity is regulated in PC12 rat pheochromocytoma cells. N-kinase is rapidly activated in these cells by treatment with NGF, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), phorbol ester, or dibutyryl cyclic AMP. Our data indicate that the stimulated activity is the same for each agent by several criteria: It exhibits the same characteristic biphasic elution pattern by Mono S fast protein liquid chromatography (FPLC), except for the case of dibutyryl cyclic AMP in which one of the activity peaks is somewhat shifted; it shows the same elution pattern by FPLC on a Superose 12 column; it possesses identical substrate specificity; and, except in the case of dibutyryl cyclic AMP, it does not show additivity when each agent is added simultaneously with NGF. The multiple forms of N-kinase are interconvertible in that rechromatography on a Mono S column yields a single peak of activity. Also, when NGF and dibutyryl cyclic AMP are simultaneously presented to cells, the chromatographic profile resembles that with NGF alone. Activation occurs through several independent initial pathways. Down-regulation of protein kinase C by phorbol ester pretreatment prevents N-kinase activation by phorbol ester, but not by the other agents. A PC12 cell-derived line deficient in cyclic AMP-dependent protein kinase II activity exhibits N-kinase activation by all treatments except dibutyryl cyclic AMP. The properties of N-kinase suggests that it is similar or identical to the ribosomal S6 protein kinase described by Blenis and Erikson. Additional experiments revealed that N-kinase activity can be stimulated in several cell lines in addition to PC12 cells. These findings indicate that the N-kinase can be activated via multiple second-messenger pathways and that it could therefore potentially play a significant role in mediating shared intracellular responses to various extracellular signals.  相似文献   

11.
R Haimovitz  M Shinitzky 《Life sciences》2001,69(23):2711-2723
A series of cyclic glycerophosphates and their deoxy analogues were tested for induction of neuronal outgrowth in PC12 cells. Under chronic presence of a cyclic phosphate PC12 cells developed distinct isles of neuronal networks which covered up to 20% of the culture area, while alpha and beta glycerophosphates (the negative control compounds) did not induce any neuronal outgrowth. Distinct isles of neuronal networks were also observed upon short term application (i.e. 2 pulses of 3 hours each at day 1 and day 4) of the tested cyclic phosphates in contrast to an analogous short term exposure to NGF which was abortive. Analysis of tyrosine phosphorylation indicated a battery of phosphorylated proteins after several minutes of application of the cyclic phosphates, among which was an ERK protein of approximately 63 kD (possibly ERK7). Nerve rescue experiments were carried out with NGF differentiated PC12 cells where NGF was replaced with either 1,2 or 1,3 cyclic propanediolphosphate (1,2 cPP and 1,3 cPP) for 7 days. A distinct dose dependent preservation of neuronal network by these compounds was observed. In the control cultures NGF deprivation resulted in massive neuronal retraction and cell death. Preliminary experiments indicated that the nerve rescue by the cyclic phosphates involves the increase in the level of CASPase 6. The above findings suggest that cyclic glycerophosphates and their analogues may bear important physiological and pharmacological implications which are currently under investigation.  相似文献   

12.
The growth of PC12 cells on a collagen substratum or on monolayers of several non-neuronal cell types was studied by measuring nerve growth factor (NGF)-dependent increases in the expression of a 150 X 10(3) (Mr) neurofilament protein subunit and the membrane glycoprotein Thy-1. Both responses were found to be greatly suppressed in cultures of fibroblasts as compared to the C2 and G8-1 muscle cell lines and the C6 glioma cell line. This suppression was associated with an inhibition of NGF-dependent neuritic outgrowth from PC12 cells grown on fibroblast monolayers. There was no evidence that fibroblasts secrete soluble molecules that directly inhibit these responses or neutralize NGF. In addition, there was no difference in the neurofilament protein response from PC12 cells that had been treated with NGF prior to coculture, and the now primed PC12 cells readily extended axons over fibroblast monolayers. These data demonstrate that cell-cell and/or cell-matrix interactions can modulate biochemical responses to NGF and suggest that responsiveness of neuronal cells to environmental cues is not immutable. Control of the latter may be at the level of expression of receptor molecules for cell-surface- or matrix-associated macromolecules and a similar mechanism operating during development could play a role in growth cone guidance.  相似文献   

13.
14.
To investigate the effects of nerve growth factor (NGF) and cyclic AMP (cAMP) on the level of the nicotinic acetylcholine receptor subunit alpha3 mRNA, we used PC12h cells, PC12 cells expressing dominant-negative Ras protein, and the parental PC12 cells. PC12h cells have NGF-responsive tyrosine hydroxylase activity. Expression of dominant-negative Ras protein prevents the signaling through the Ras-mitogen-activated protein kinase cascade. The morphological changes of the parental PC12 cells in response to NGF and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPTcAMP), a cell-penetrating cAMP analogue, were similar to those of PC12h cells. NGF up-regulated the alpha3 mRNA level in PC12h cells and down-regulated the alpha3 mRNA level in the parental PC12 cells. Expression of dominant-negative Ras protein and an inhibitor of mitogen-activated protein kinase kinase inhibited the effects of NGF on alpha3 mRNA level. CPTcAMP down-regulated the alpha3 mRNA level in all three PC12 cell lines. An inhibitor of protein kinase A inhibited the CPTcAMP-induced down-regulation of alpha3 mRNA. The alpha3 mRNA down-regulation required prolonged treatment with CPTcAMP even after cAMP response element binding protein phosphorylation was decreased. Membrane depolarization with high K+ had no effect on the alpha3 mRNA level in PC12h cells. Based on these results, we propose that at least two unknown effectors regulate alpha3 mRNA levels in PC12 cells.  相似文献   

15.
The neuron-glia cell adhesion molecule (Ng-CAM) has been identified in mammalian brain tissue and PC12 pheochromocytoma cells as Mr 200,000 and Mr 230,000 species, respectively. When PC12 cells were treated with nerve growth factor (NGF), the amount of Ng-CAM at the cell surface was increased approximately threefold, whereas the amount of the neural cell adhesion molecule (N-CAM) remained unchanged. An NGF-inducible large external glycoprotein (NILE) has been previously identified by its enhanced expression in NGF-treated PC12 cells. Ng-CAM and NILE are similar in molecular weight, expression during development, and responsiveness to NGF in PC12 cells, suggesting that the two molecules are related. In addition, antibodies to Ng-CAM and NILE cross-reacted and the molecules had similar peptide maps after limited proteolysis. Moreover, antibodies to Ng-CAM inhibited fasciculation of neurites, a functional property shared with NILE. The results show that cell adhesion molecules can respond selectively to growth factors and suggest that NILE is, in fact, mammalian Ng-CAM.  相似文献   

16.
Rat pheochromocytoma cells (clone PC12) possess functional surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells respond to NGF as well as to dibutyryl cyclic AMP (dbcAMP) by arrest of cell proliferation and initiation of morphological differentiation, while EGF acts as a mitogen. Exposure of PC12 cells to NGF for several days resulted in a complete loss of rapid EGF responses, such as membrane ruffling and activation of active K+ transport. EGF binding studies revealed that this loss of EGF responses was due to an almost complete reduction of the number of EGF binding sites. In contrast, exposure of PC12 cells to dbcAMP for 2 days did not affect the rapid EGF responses, despite the morphological differentiation. Moreover, EGF binding studies demonstrated a twofold increase in the number of high-affinity binding sites and a small increase in the number of low-affinity sites. In addition, exposure of the cells to dbcAMP caused a twofold increase of EGF-receptor phosphotyrosine kinase activity. These results indicate that neither EGF-binding or the presence of EGF receptors nor the rapid EGF responses are sufficient for persistent proliferation, on one hand, or sufficient to avoid morphological differentiation, on the other.  相似文献   

17.
The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
19.
PC12 cells possess two classes of nerve growth factor (NGF) receptors on their surfaces which can be distinguished by kinetic criteria. The majority class binds and releases 125I-NGF at a relatively rapid rate and has been called fast. The second class of receptors has been called slow because of relatively slower rates of binding and release of 125I-NGF, and also may be distinguished from fast receptors by their cytoskeletal association and resistance to trypsin. PC12 cell plasma membranes were prepared and shown to have only the fast class of receptors. These membranes were fused to receptorless 3T3 cells with polyethylene glycol. The resultant fused cells were shown to possess NGF receptors, essentially all of which behave like slow receptors. Immunofluorescence microscopy was used to monitor the introduction of PC12 cell membrane and NGF receptors into 3T3 cells. Results obtained with C10-2, a monoclonal antibody specific for a major PC12 cell-surface antigen. show that up to 90% of 3T3 cells receive PC12 membrane and that the PC12 membrane becomes integrally incorporated into the 3T3 cell plasma membrane. It is suggested that an association of receptors with cytoskeleton may be involved in the conversion of fast to slow receptor behavior, and that the differing proportion of fast and slow NGF receptors in PC12 and 3T3 cells reflects the differing cytoskeletal organization of these cells.  相似文献   

20.
Upon stimulation with nerve growth factor (NGF), PC12 cells extend neurites and cease to proliferate by influencing cell cycle proteins. Previous studies have shown that neuritogenesis and a block at the G(1)/S checkpoint correlate with the nuclear translocation of and an increase in the p53 tumor suppressor protein. This study was designed to determine if p53 plays a direct role in mediating NGF-driven G(1) arrest. A retroviral vector that overexpresses a temperature-sensitive p53 mutant protein (p53ts) was used to extinguish the function of endogenous p53 in PC12 cells in a dominant-negative manner at the nonpermissive temperature. NGF treatment led to transactivation of a p53 response element in a luciferase reporter construct in PC12 cells, whereas this response to NGF was absent in PC12(p53ts) cells at the nonpermissive temperature. With p53 functionally inactivated, NGF failed to activate growth arrest, as measured by bromodeoxyuridine incorporation, and also failed to induce p21/WAF1 expression, as measured by Western blotting. Since neurite outgrowth proceeded unharmed, 50% of the cells simultaneously demonstrated neurite morphology and were in S phase. Both PC12 cells expressing SV40 T antigen and PC12 cells treated with p53 antisense oligonucleotides continued through the cell cycle, confirming the dependence of the NGF growth arrest signal on a p53 pathway. Activation of Ras in a dexamethasone-inducible PC12 cell line (GSRas1) also caused p53 nuclear translocation and growth arrest. Therefore, wild-type p53 is indispensable in mediating the NGF antiproliferative signal through the Ras/MAPK pathway that regulates the cell cycle of PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号