首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexin II tetramer (A-IIt) is a member of the annexin family of Ca2+ and phospholipid-binding proteins. The ability of this protein to aggregate both phospholipid vesicles and chromaffin granules has suggested a role for the protein in membrane trafficking events such as exocytosis. A-IIt is also a major intracellular substrate of both pp60src and protein kinase C; however, the effect of phosphorylation on the activity of this protein is unknown. In the current report we have examined the effect of phosphorylation on the lipid vesicle aggregation activity of the protein. Protein kinase C catalyzed the incorporation of 2.1 +/- 0.8 mol of phosphate/mol of A-IIt. Phosphorylation of A-IIt caused a dramatic decrease in the rate and extent of lipid vesicle aggregation without significantly effecting Ca(2+)-dependent lipid binding by the phosphorylated protein. Phosphorylation of A-IIt increased the A50%(Ca2+) of lipid vesicle aggregation from 0.18 microM to 0.65 mM. Activation of A-IIt phosphorylation, concomitant with activation of lipid vesicle aggregation, inhibited both the rate and extent of lipid vesicle aggregation but did not cause disassembly of the aggregated lipid vesicles. These results suggest that protein kinase C-dependent phosphorylation of A-IIt blocks the ability of the protein to aggregate phospholipid vesicles without affecting the lipid vesicle binding properties of the protein.  相似文献   

2.
Annexin II tetramer (AIIt) is a major Ca(2+)-binding protein of the endothelial cell surface which has been shown to stimulate the tissue plasminogen activator (t-PA)-dependent conversion of plasminogen to plasmin. In the present report, we have examined the regulation of plasmin activity by AIIt. The incubation of plasmin with AIIt resulted in a 95% loss in plasmin activity. SDS-PAGE analysis established that AIIt stimulated the autoproteolytic digestion of plasmin heavy and light chains. The kinetics of AIIt-stimulated plasmin autoproteolysis were first-order, suggesting that binding of plasmin to AIIt resulted in the spontaneous autoproteolysis of the bound plasmin. AIIt did not affect the activity of other serine proteases such as t-PA or urokinase-type plasminogen activator. Furthermore, other annexins such as annexin I, II, V, or VI did not stimulate plasmin autoproteolysis. Increasing the concentration of AIIt on the surface of human 293 epithelial cells increased cell-mediated plasmin autoproteolysis. Thus, in addition to stimulating the formation of plasmin, AIIt also promotes plasmin inactivation. These results therefore suggest that AIIt may function to provide the cell surface with a transient pulse of plasmin activity.  相似文献   

3.
We investigated the effect of nitric oxide (NO) donors on the activities of annexin II tetramer (AIIt), a member of the Ca2+- dependent phospholipid-binding protein family. Incubation of purified AIIt with S-nitrosoglutathione (GSNO) led to the inhibition of AIIt-mediated liposome aggregation. This effect was dose-dependent with an IC50 of approximately 100 micro m. Sodium nitroprusside, another NO donor also inhibited AIIt-mediated liposome aggregation, whereas reduced glutathione, nitrate, or nitrite had no effects. GSNO also inhibited AIIt-mediated membrane fusion, but not the binding of AIIt to the membrane. GSNO only has a modest effect on liposome aggregation mediated by annexins I, III or IV. The binding of AIIt to the membrane protected the reactive sites of GSNO on AIIt. GSNO did not inhibit AIIt-mediated liposome aggregation in the presence of dithiothreitol. Taken together, our results suggest that GSNO inactivates AIIt possibly via S-nitrosylation and/or the formation of disulfide bonds.  相似文献   

4.
The actin cytoskeleton supports diverse cellular processes such as endocytosis, oriented growth, adhesion and migration. The dynamic nature of the cytoskeleton, however, has made it difficult to define the roles of the many accessory molecules that modulate actin organization, especially the multifunctional adapter protein annexin II. We now report that the compound withaferin A (1) can alter cytoskeletal architecture in a previously unknown manner by covalently binding annexin II and stimulating its basal F-actin cross-linking activity. Drug-mediated disruption of F-actin organization is dependent on annexin II expression by cells and markedly limits their migratory and invasive capabilities at subcytotoxic concentrations. Given the extensive ethnobotanical history of withaferin-containing plant preparations in the treatment of cancer and inflammatory and neurological disorders, we suggest that annexin II represents a feasible, previously unexploited target for therapeutic intervention by small-molecule drugs.  相似文献   

5.
Annexin II tetramer (AII(t)) is a member of the Ca(2+)- and phospholipid-binding protein family and is implicated in membrane fusion during surfactant secretion. It had previously been shown that high concentrations of nitric oxide (NO) inhibit surfactant secretion from lung type II cells. NO reacts with superoxide (O(2)(-)) to form peroxynitrite (ONOO(-)), a tyrosine nitrating agent, which is found in lungs under certain pathological conditions. It is therefore hypothesized that nitration of AII(t) by ONOO(-) may be a mechanism for the NO inhibition of regulated exocytosis. We therefore performed in vitro studies to test effects of ONOO(-) on AII(t). Western blot analysis using anti-nitrotyrosine antibodies showed a dose-dependent nitration of tyrosine residues in AII(t) treated with ONOO(-). Nitration occurred on the core domain of the p36 subunit, as well as on the p11 subunit. ONOO(-) also caused the formation of dimers between p36 and p11 subunits which were stable in the presence of heating, SDS, and beta-mercaptoethanol. AII(t)-mediated liposome aggregation was inhibited by ONOO(-) with an IC(50) of approximately 30 microM. The inhibition was abolished by urate (a scavenger of ONOO(-) and *OH), but not by mannitol (a scavenger of *OH) or superoxide dismutase (a scavenger of O(2)(-)) and appeared to be specific to AII(t), since ONOO(-) only slightly influenced annexin I-mediated liposome aggregation. The conformational change of AII(t) induced by Ca(2+) had no effect on the inhibition. Furthermore, ONOO(-) only partially inhibited the binding of AII(t) to membranes. Nitration of AII(t) also occurred in intact A549 cells, a lung epithelial cell line, treated with ONOO(-). The results of this study suggest that AII(t)-mediated liposome aggregation was inhibited by nitration of the protein.  相似文献   

6.
Fucoidan, a sulfated fucopolysaccharide, mimics the fucosylated glycans of glycoproteins and has therefore been used as a probe for investigating the role of membrane polysaccharides in cell-cell adhesion. In the present report we have characterized the interaction of fucoidan with the Ca(2+)- and phospholipid-binding protein annexin II tetramer (AIIt). AIIt bound to fucoidan with an apparent K(d) of 1.24 +/- 0.69 nM (mean +/- SD, n = 3) with a stoichiometry of 0.010 +/- 0.001 mol of fucoidan/mol of AIIt (mean +/- SD, n = 3). The binding of fucoidan to AIIt was Ca(2+)-independent. Furthermore, in the presence but not the absence of Ca(2+), the binding of fucoidan to AIIt caused a decrease in the alpha-helical content from 32% to 7%. A peptide corresponding to a region of the p36 subunit of AIIt, F(306)-S(313), which contains a Cardin-Weintraub consensus sequence for heparin binding, was shown to undergo a conformational change upon fucoidan binding. This suggests that heparin and fucoidan bound to this region of AIIt. The binding of fucoidan but not heparin by AIIt also inhibited the ability of AIIt to bind to and aggregate phospholipid liposomes. These results suggest that the binding of AIIt to the carbohydrate conjugates of certain membrane glycoproteins may have profound effects on the structure and biological activity of AIIt.  相似文献   

7.
K K Phelps  R A Walker 《Biochemistry》1999,38(33):10750-10757
N-Ethylmaleimide (NEM), which reacts readily with exposed sulfhydryl groups, has been shown to inhibit the activity of the microtubule (MT) motors kinesin, Ncd, and dynein. Currently, the mechanism of inhibition is not known for any of these proteins. To investigate the mechanism by which NEM inhibits Ncd, the recombinant Ncd motor-stalk protein MC1 (modified claret 1) was treated with varying concentrations of NEM (0-10 mM) and cosedimentation and ATPase assays were used to assess the effects of modification on MC1 interactions with MTs. In the cosedimentation assay, treatment with /=0.5 mM NEM induced aggregation of MC1 and resulted in sedimentation of the motor in the absence of MTs. NEM modification had no effect on the basal ATPase rate but produced a decrease in the MT-stimulated ATPase rate. Labeling of MC1 with [3H]NEM indicated that enhanced MT binding was associated with an average labeling of 1 Cys residue per MC1 polypeptide, while aggregation was associated with an average labeling of 2 Cys residues per MC1 polypeptide. Protein digestion, structural analysis, and mass spectrometry indicate that modification of Cys313 or Cys324 in the stalk domain is correlated with enhanced binding of MC1 to MTs. These results suggest that NEM enhances Ncd binding to MTs by disruption of neck and/or stalk function and demonstrate the importance of this region in motor function.  相似文献   

8.
Annexin II heterotetramer (AIIt) is a multifunctional Ca(2+)-binding protein composed of two 11-kDa subunits and two annexin II subunits. The annexin II subunit contains three type II and two type III Ca(2+)-binding sites which are thought to regulate the interaction of AIIt with anionic phospholipid, F-actin, and heparin. In the present study we utilized site-directed mutagenesis to create AIIt mutants with inactive type III (TM AIIt), type II (CM AIIt), and both type II and III Ca(2+)-binding sites (TCM AIIt). Surprisingly, we found that in the presence of Ca(2+), the TM, CM, and TCM AIIt bound phospholipid and F-actin with similar affinity to the wild type AIIt (WT AIIt). Furthermore, the TCM mutant, and to a lesser extent the TM and CM AIIt displayed dose-dependent Ca(2+)-independent phospholipid aggregation and binding. While the TM and CM AIIt demonstrated Ca(2+)-dependent binding to F-actin, the binding of the TCM AIIt was Ca(2+)-independent. These results suggest that the type II or type III Ca(2+)-binding sites do not directly participate in anionic phospholipid or F-actin binding. We therefore propose that in the absence of Ca(2+), the type II and type III Ca(2+)-binding sites of AIIt stabilize a conformation of AIIt that is unfavorable for binding phospholipid and F-actin. Ca(2+) binding to these sites, or the inactivation of these Ca(2+)-binding sites by site-directed mutagenesis, results in a conformational change that promotes binding to anionic phospholipid and F-actin. Since the TM, CM, and TCM AIIt require Ca(2+) for binding to heparin, we also propose that novel Ca(2+)-binding sites regulate this binding event.  相似文献   

9.
Proteins can be post-translationally modified by ADP-ribose. Previously, two classes of ADP-ribosyl protein linkages have been detected in vivo which have chemical properties indistinguishable from ADP-ribosyl arginine and ADP-ribosyl glutamate or aspartate. Reported here is the detection of a third class of endogenous ADP-ribosyl protein linkage. This class is chemically indistinguishable from ADP-ribose linked to cysteine residues by a thioglycosidic bond. The distribution of ADP-ribosyl cysteine residues was studied in subcellular fractions of rat liver. Proteins modified on cysteine were detected only in the plasma membrane fraction. Pertussis toxin is known to disrupt signal transduction of ADP-ribosylation of cysteine residues of plasma membrane GTP binding proteins. The results described here raise the interesting possibility that the endogenous modification of plasma membrane protein cysteine residues may be involved in signal transduction.  相似文献   

10.
The cysteine protease cathepsin B is upregulated in a variety of tumors, particularly at the invasive edges. Cathepsin B can degrade extracellular matrix proteins, such as collagen IV and laminin, and can activate the precursor form of urokinase plasminogen activator (uPA), perhaps thereby initiating an extracellular proteolytic cascade. Recently, we demonstrated that procathepsin B interacts with the annexin II heterotetramer (AIIt) on the surface of tumor cells. AIIt had previously been shown to interact with the serine proteases: plasminogen/plasmin and tissue-type plasminogen activator (tPA). The AIIt binding site for cathepsin B differs from that for either plasminogen/plasmin or tPA. AIIt also interacts with extracellular matrix proteins, e.g., collagen I and tenascin-C, forming a structural link between the tumor cell surface and the extracellular matrix. Interestingly, cathepsin B, plasminogen/plasmin, t-PA and tenascin-C have all been linked to tumor development. We speculate that colocalization through AIIt of proteases and their substrates on the tumor cell surface may facilitate: (1) activation of precursor forms of proteases and initiation of proteolytic cascades; and (2) selective degradation of extracellular matrix proteins. The recruitment of proteases to specific regions on the cell surface, regions where potential substrates are also bound, could well function as a 'proteolytic center' to enhance tumor cell detachment, invasion and motility.  相似文献   

11.
The resolution of complex protein mixtures by discontinuous buffer SDS-PAGE is accomplished by their concentration into thin bands in the stacking gel, followed by their separation during migration through the resolving gel. Recombinant human interferon-inducible protein-10 (IP-10), a 10-kDa C-X-C chemokine with four cysteines, aggregated during the stacking phase of SDS-PAGE and generated a band with an apparent molecular mass of 18 kDa. This aggregation depended on the presence of reduced sulfhydryl residues on IP-10, on the amount of loaded protein, and on the concentration of the ammonium persulfate used to polymerize the stacking gel. The aggregation of IP-10 could be prevented by reduction of its sulfhydryls with dithiothreitol followed by irreversible blockade with iodoacetamide. These methods may be useful in the prevention of aggregation of sulfhydryl-containing proteins during SDS-PAGE, especially when large quantities are analyzed to assess their purity.  相似文献   

12.
N-alpha-tosyl-l-phenylalanyl chloromethyl ketone (TPCK) has anti-tumorigenic properties, but its direct cellular targets are unknown. Previously, we showed TPCK inhibited the PDKl-dependent AGC kinases RSK, Akt and S6K1 without inhibiting PKA, ERK1/2, PI3K, and PDK1 itself. Here we show TPCK-inhibition of the RSK-related kinases MSK1 and 2, which can be activated independently of PDK1. Mass spectrometry analysis of RSK1, Aktl, S6K1 and MSK1 immunopurified from TPCK-treated cells identified TPCK adducts on cysteines located in conserved activation loop Phenylalanine-Cysteine (Phe-Cys) motifs. Mutational analysis of the Phe-Cys residues conferred partial TPCK resistance. These studies elucidate a primary mechanism by which TPCK inhibits several AGC kinases, inviting consideration of TPCK-like compounds in chemotherapy given their potential for broad control of cellular growth, proliferation and survival.  相似文献   

13.
To study potential roles of plasma membrane-associated extracellular cathepsin B in tumor cell invasion and metastasis, we used the yeast two-hybrid system to screen for proteins that interact with human procathepsin B. The annexin II light chain (p11), one of the two subunits of the annexin II tetramer, was one of the proteins identified. We have confirmed that recombinant human procathepsin B interacts with p11 as well as with the annexin II tetramer in vitro. Furthermore, procathepsin B could interact with the annexin II tetramer in vivo as demonstrated by coimmunoprecipitation. Cathepsin B and the annexin II tetramer were shown by immunofluorescent staining to colocalize on the surface of human breast carcinoma and glioma cells. Taken together, our results indicate that the annexin II tetramer can serve as a binding protein for procathepsin B on the surface of tumor cells, an interaction that may facilitate tumor invasion and metastasis.  相似文献   

14.
Annexin II has been implicated in membrane fusion during the exocytosis of lamellar bodies from alveolar epithelial type II cells. Most previous studies were based on the fusion assays by using model membranes. In the present study, we investigated annexin II-mediated membrane fusion by using isolated lamellar bodies and plasma membrane as determined by the relief of octadecyl rhodamine B (R18) self-quenching. Immunodepletion of annexin II from type II cell cytosol reduced its fusion activity. Purified annexin II tetramer (AIIt) induced the fusion of lamellar bodies with the plasma membrane in a dose-dependent manner. This fusion is Ca2+-dependent and is highly specific to AIIt because other annexins (I and II monomer, III, IV, V, and VI) were unable to induce the fusion. Modification of the different functional residues of AIIt by N-ethylmaleimide, nitric oxide, or peroxynitrite abolished AIIt-mediated fusion. Arachidonic acid enhanced AIIt-mediated fusion and reduced its Ca2+ requirement to an intracellularly achievable level. This effect is due to membrane-bound arachidonic acid, not free arachidonic acid. Other fatty acids including linolenic acid, palmitoleic acid, myristoleic acid, stearic acid, palmitic acid, and myristic acid had little effect. AIIt-mediated fusion was suppressed by the removal of arachidonic acid from lamellar body and plasma membrane using bovine serum albumin. The addition of arachidonic acid back to the arachidonic acid-depleted membranes restored its fusion activity. Our results suggest that the fusion between lamellar bodies with the plasma membrane is driven by the synergistic action of AIIt and arachidonic acid.  相似文献   

15.
Bitto E  Li M  Tikhonov AM  Schlossman ML  Cho W 《Biochemistry》2000,39(44):13469-13477
It has been proposed that annexin I has two separate interaction sites that are involved in membrane binding and aggregation, respectively. To better understand the mechanism of annexin I-mediated membrane aggregation, we investigated the properties of the inducible secondary interaction site implicated in membrane aggregation. X-ray specular reflectivity measurements showed that the thickness of annexin I layer bound to the phospholipid monolayer was 31 +/- 2 A, indicating that annexin I binds membranes as a protein monomer or monolayer. Surface plasmon resonance measurements of annexin I, V, and mutants, which allowed evaluation of membrane aggregation activity of annexin I separately from its membrane binding, revealed direct correlation between the relative membrane aggregation activity and the relative affinity of the secondary interaction site for the secondary membrane. The secondary binding was driven primarily by hydrophobic interactions, unlike calcium-mediated electrostatic primary membrane binding. Chemical cross-linking of membrane-bound annexin I showed that a significant degree of lateral association of annexin I molecules precedes its membrane aggregation. Taken together, these results support a hypothetical model of annexin I-mediated membrane aggregation, in which a laterally aggregated monolayer of membrane-bound annexin I directly interacts with a secondary membrane via its induced hydrophobic interaction site.  相似文献   

16.
Myelin basic protein derived from bovine spinal cord has been interacted with liposomes of varying brain lipid compositions. The effects of salt and protein concentration on liposome cross linking has been investigated. It appears that myelin basic protein cannot link liposomes composed of brain-derived phosphatidyl choline. Myelin basic protein can link liposomes composed of phosphatidyl serine; phosphatidyl serine + cholesterol; phosphatidyl serine + cholesterol + cerebroside sulphate. Linking of liposomes occurs at protein concentrations lower than those required for myelin basic protein dimers to be formed. Therefore, it seems that the monomeric form of myelin basic protein links lipid bilayers. The presence of cholesterol in the bilayer increases the ability of myelin basic protein to aggregate such liposomes compared with the linking ability of the polycationic polypeptide, poly-l-lysine.  相似文献   

17.
Wu CM  Chen HL  Liou W  Lin TL  Jeng US 《Biomacromolecules》2004,5(6):2324-2328
Liposome consisting of a single zwitterionic lipid as the potential vector for gene therapy has been reported recently; however, whether polyanionic DNA can bind directly with zwitterionic lipid without the aid of multivalent salt still remains unresolved. In this study, we reveal the aggregation of zwitterionic oligolamellar liposomes composed of 1,2-di(cis-9-octadecenoyl)-sn-glycero-3-phosphocholine induced by DNA without the presence of multivalent salt. Our results demonstrate that only a small fraction (<10%) of DNA can bind electrostatically with a portion of the liposomes. Such a low degree of binding, however, induces significant aggregation of these oligolamellar liposomes, yielding large multilamellar particles in which the number of hydrophilic/hydrophobic layer stacking becomes sufficiently large to yield multiple diffraction peaks in the small-angle X-ray scattering profile. Addition of monovalent salt such as NaCl tends to disrupt the multilamellar structure.  相似文献   

18.
Human placental annexin I and annexin II were shown to be glycosylated by one-dimensional affinity blotting with the lectin concanavalin A, which recognizes D-mannose and D-glucose residues. Further evidence that annexin I and annexin II are glycosylated was provided by the finding that these proteins incorporated D-[2,6-3H]mannose and D-[6-3H]glucose when they were biosynthesized by the human squamous carcinoma cell line SqCC/Y1. Annexin I and annexin II could be rapidly purified from a human placental membrane extract by concanavalin A-Sepharose, which indicated that these proteins contain two biantennary mannosyl residues.  相似文献   

19.
Beta(2)-glycoprotein I (beta(2)GPI) is an abundant plasma phospholipid-binding protein and an autoantigen in the antiphospholipid antibody syndrome. Binding of beta(2)GPI to endothelial cells targets them for activation by anti-beta(2)GPI antibodies, which circulate and are associated with thrombosis in patients with the antiphospholipid antibody syndrome. However, the binding of beta(2)GPI to endothelial cells has not been characterized and is assumed to result from association of beta(2)GPI with membrane phospholipid. Here, we characterize the binding of beta(2)GPI to endothelial cells and identify the beta(2)GPI binding site. (125)I-beta(2)GPI bound with high affinity (K(d) approximately 18 nm) to human umbilical vein endothelial cells (HUVECs). Using affinity purification, we isolated beta(2)GPI-binding proteins of approximately 78 and approximately 36 kDa from HUVECs and EAHY.926 cells. Amino acid sequences of tryptic peptides from each of these were identical to sequences within annexin II. A role for annexin II in binding of beta(2)GPI to cells was confirmed by the observations that annexin II-transfected HEK 293 cells bound approximately 10-fold more (125)I-beta(2)GPI than control cells and that anti-annexin II antibodies inhibited the binding of (125)I-beta(2)GPI to HUVECs by approximately 90%. Finally, surface plasmon resonance studies revealed high affinity binding between annexin II and beta(2)GPI. These results demonstrate that annexin II mediates the binding of beta(2)GPI to endothelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号