首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Exosomes (EXO) derived from tumour cells have been used to stimulate antitumour immune responses, but only resulting in prophylatic immunity. Tumour‐derived heat shock protein 70 (HSP70) molecules are molecular chaperones with a broad repertoire of tumour antigen peptides capable of stimulating dendritic cell (DC) maturation and T‐cell immune responses. To enhance EXO‐based antitumour immunity, we generated an engineered myeloma cell line J558HSP expressing endogenous P1A tumour antigen and transgenic form of membrane‐bound HSP70 and heat‐shocked J558HS expressing cytoplasmic HSP70, and purified EXOHSP and EXOHS from J558HSP and J558HS tumour cell culture supernatants by ultracentrifugation. We found that EXOHSP were able to more efficiently stimulate maturation of DCs with up‐regulation of Iab, CD40, CD80 and inflammatory cytokines than EXOHS after overnight incubation of immature bone‐marrow‐derived DCs (5 × 106 cells) with EXO (100 μg), respectively. We also i.v. immunized BALB/c mice with EXO (30 μg/mouse) and assessed P1A‐specific T‐cell responses after immunization. We demonstrate that EXOHSP are able to stimulate type 1 CD4+ helper T (Th1) cell responses, and more efficient P1A‐specific CD8+ cytotoxic T lymphocyte (CTL) responses and antitumour immunity than EXOHS. In addition, we further elucidate that EXOHSP‐stimulated antitumour immunity is mediated by both P1A‐specific CD8+ CTL and non‐P1A‐specific natural killer (NK) responses. Therefore, membrane‐bound HSP70‐expressing tumour cell‐released EXO may represent a more effective EXO‐based vaccine in induction of antitumour immunity.  相似文献   

2.
B cells have recently emerged as playing regulatory role in autoimmune diseases. We have previously demonstrated that human peripheral blood CD19+ CD24hiCD27+ B cells have regulatory function both in healthy donors and in patients with autoimmune disease. However, the mechanism of this regulation is still not fully understood. In this study, microarrays were utilized to compare gene expression of CD19+ CD24hiCD27+ B cells (regulatory B cells, Bregs) with CD19+ CD24loCD27 B cells (non-Bregs) in human peripheral blood. We found that heat shock protein 70 (HSP70) expression was significantly upregulated in Bregs. In vitro studies explored that HSP70 inhibition impaired the regulatory function of peripheral blood Bregs. In mouse models of autoimmune disease, using HSP70-deficient mice or HSP70 inhibitors, Bregs suppressed effector cells and rescued disease-associated phenotypes that were dependent on HSP70. Mechanistically, Bregs secreted HSP70, directly suppressing effector cells, such as T effect cells. These findings reveal that HSP70 is a novel factor that modulates Breg function and suggest that enhancing Breg-mediated production of HSP70 could be a viable therapy for autoimmune disease.  相似文献   

3.
Human CD4+CD25+FoxP3+ T regulatory cells (Tregs) control effector T cells and play a central role in peripheral tolerance and immune homeostasis. Heat shock protein 70 (HSP70) is a major immunomodulatory molecule, but its effect on the functions of Tregs is not well understood. To investigate target-dependent and –independent Treg functions, we studied cytokine expression, regulation of proliferation and cytotoxicity after exposure of Tregs to HSP70. HSP70-treated Tregs significantly inhibited proliferation of CD4+CD25 target cells and downregulated the secretion of the proinflammatory cytokines IFN-γ and TNF-α. By contrast, HSP70 increased the secretion of Treg suppressor cytokines IL-10 and TGF-β. Treatment with HSP70 enhanced the cytotoxic properties of Tregs only to a minor extent (4-fold), but led to stronger responses in CD4+CD25 cells (42-fold). HSP70-induced modulation of T-cell responses was further enhanced by combined treatment with HSP70 plus IL-2. Treatment of Tregs with HSP70 led to phosphorylation of PI3K/AKT and the MAPKs JNK and p38, but not that of ERK1/2. Exposure of Tregs to specific inhibitors of PI3K/AKT and the MAPKs JNK and p38 reduced the immunosuppressive function of HSP70-treated Tregs as indicated by the modified secretion of specific target cell (IFN-γ, TNF-α) and suppressor cytokines (IL-10, TGF-β). Taken together, the data show that HSP70 enhances the suppressive capacity of Tregs to neutralize target immune cells. Thus HSP70-enhanced suppression of Tregs may prevent exaggerated immune responses and may play a major role in maintaining immune homeostasis.  相似文献   

4.
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.  相似文献   

5.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

6.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) is a tachyzoite-specific virulent molecule. The DNA vaccine with T.g.HSP70 gene targeting peripheral epidermal or dermal dendritic cells (DC) induces in vivo DC maturation and successive early Th1 polarization at the draining lymph nodes (dLN) of C57BL/6 mice. In the present study, induction of cytotoxic T lymphocytes (CTL) has been explored. The CTL specific for a syngeneic DC line, DC2.4, either transfected with T. g.HSP70 gene or pulsed with recombinant T. g.HSP70 are induced in the spleen of the vaccinated mice. This CTL lyses T. gondii-infected, but not uninfected, DC2.4. Both CD8+ and CD4+ CTL are induced by the vaccine, and Fas/Fas ligand-mediated cytolysis dominantly participates in their CTL activities. Adoptive transfer experiments reveal that the vaccine-induced CD8+ or CD4+ T cells possess a protective role for toxoplasmosis at both acute and chronic phases of infection.  相似文献   

7.
Human hematopoietic stem/progenitor cells (HSC) isolated based upon specific patterns of CD34 and CD38 expression, despite phenotypically identical, were found to be functionally heterogeneous, raising the possibility that reversible expression of these antigens may occur during cellular activation and/or proliferation. In these studies, we combined PKH67 tracking with CD34/CD38 immunostaining to compare cell division kinetics between human bone marrow (BM) and cord blood (CB)‐derived HSC expanded in a serum‐free/stromal‐based system for 14 days (d), and correlated CD34 and CD38 expression with the cell divisional history. CB cells began dividing 24 h earlier than BM cells, and significantly higher numbers underwent mitosis during the time in culture. By d10, over 55% of the CB‐cells reached the ninth generation, whereas BM‐cells were mostly distributed between the fifth and seventh generation. By d14, all CB cells had undergone multiple cell divisions, while 0.7–3.8% of BM CD34+ cells remained quiescent. Furthermore, the percentage of BM cells expressing CD34 decreased from 60.8 ± 6.3% to 30.6 ± 6.7% prior to initiating division, suggesting that downmodulation of this antigen occurred before commencement of proliferation. Moreover, with BM, all primitive CD34+CD38? cells present at the end of culture arose from proliferating CD34+CD38+ cells that downregulated CD38 expression, while in CB, a CD34+CD38? population was maintained throughout culture. These studies show that BM and CB cells differ significantly in cell division kinetics and expression of CD34 and CD38, and that the inherent modulation of these antigens during ex vivo expansion may lead to erroneous quantification of the stem cell content of the expanded graft. J. Cell. Physiol. 220: 102–111, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity.  相似文献   

9.
Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo-inositol-trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2) and stabilizes vessel normalization through activation of endothelial Phosphatase-and-Tensin-homologue (PTEN). Here, we show that the tumour reduction due to the ITPP-induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage-type proportions, increased proportions of NK and CD8+T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+NK cells to tumour cells is due to their adhesion to PD-L1+/PD-L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD-L1/PD-L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA-4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.  相似文献   

10.
Summary Human papillomavirus (HPV) E6 and E7 are consistently expressed and are responsible for the malignant transformation of HPV-associated lesions. Thus, E6 and E7 represent ideal targets for therapeutic HPV vaccine development. We have previously used the gene gun approach to test several intracellular targeting and intercellular spreading strategies targeting HPV-16 E7. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat shock protein 70 (HSP70), calreticulin (CRT) and herpes simplex virus type 1 (HSV-1) VP22 proteins. All of these strategies have been shown to be capable of enhancing E7-DNA vaccine potency. In the current study, we have characterized DNA vaccines employing these intracellular targeting or intercellular spreading strategies targeting HPV-16 E6 for their ability to generate E6-specific CD8+ T cell immune responses and antitumor effects against an E6-expressing tumor cell line, TC-1, in C57BL/6 mice. We found that all the intracellular targeting strategies (CRT, LAMP-1, HSP70) as well as the intercellular spreading strategy (VP22) were able to enhance E6 DNA vaccine potency, although the orientation of HSP70 linked to E6 antigen in the E6 DNA vaccine appears to be important for the HSP70 strategy to work. The enhanced E6-specific CD8+ T cell immune response in vaccinated mice also translated into potent antitumor effects against TC-1 tumor cells. Our data indicate that all of the intracellular targeting and intercellular spreading strategies that have been shown to enhance E7 DNA vaccine potency were also able to enhance E6 DNA vaccine potency.  相似文献   

11.
Early investigations into the immune surveillance of chemically-induced sarcomas led to two important concepts in tumour immunobiology: one, tumour rejection can be elicited by immune recognition of tumour antigens; and two, tumours express unique sets of antigens, which are known as tumour-specific antigens. The pioneering studies of Srivastava and colleagues led to the proposal that heat-shock proteins (HSPs) function as ubiquitous tumour-specific antigens, with the specificity residing in a population of bound peptides that identify the tissue of origin of the HSP. However, recent findings, including new data on the cell biology of peptide generation and trafficking, have called into question the specificity of tumour rejection that is induced by HSPs.  相似文献   

12.
Dendritic cells are special and powerful antigen‐presenting cells that can induce primary immune responses against tumour‐associated antigens. They can present antigens via both MHC‐I and MHC‐II, so they have the ability to stimulate both cytotoxic T lymphocytes and T helper cells. Furthermore, CD8+ cytotoxic T lymphocytes require activation by CD4+ T cells. This requires a CD4+T cell activator molecule, of which PADRE is one of the best. We chose an approach to use both of these important arms of the immune system. We prepared dendritic cells from mouse bone marrow, loaded them with our target peptides (P5 peptide alone or P5 + PADRE), and then injected these pulsed dendritic cells alone or in combination with CpG‐ODN (as adjuvant) into BALB/C mice. After the last boosting dose, mice were inoculated with TUBO cells, which overexpress HER2/neu. Two weeks after the tumour cell injection, immunological tests were performed on splenocyte suspensions, and the remaining mice were evaluated for tumour growth and survival. Our data indicate the formulation that contains PADRE plus P5 loaded onto DC in combination with CpG‐ODN was the most effective formulation at inducing immune responses. Interferon production in CD4+ and CD8+ gated cells, cytotoxicity rates of target cells and mice survival were all significantly greater in this group than in controls, and all the mice in this group were tumour‐free throughout the experiment. Based on our results and the role of HER2/neu as a candidate in human immunotherapy, this approach may be an effective cancer treatment.  相似文献   

13.
Immunotherapy of cancer could be possible in cases in which competent effector T cells can be induced. Such an approach depends on expression of tumour-specific antigens by the tumour cells and on the availability of sufficient costimulatory support for activation of cytotoxic T lymphocytes. Here, a strategy for helper T cell recruitment for induction of tumour-specific cytotoxic immune responses is presented. Allogenic MHC class II molecules were introduced into tumour cells by cell fusion. These hybrid cells, when injected into mice, induced rejection of an established tumour. The contribution of CD4-expressing helper T cells in the induction phase and of CD8-expressing T cells in the effector phase of the immune response was demonstrated. The approach described could be applicable to cases in which a suitable tumour antigen is present but not identified; it employs regulatory interactions that govern physiological immune responses and is designed to be minimally invasive.  相似文献   

14.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) was proven to induce lethal anaphylactic reaction in T. gondii-infected mice through platelet-activating factor (PAF)-mediated, but not classical IgE-dependent, pathway via TLR4/MyD88 signal pathway. The effector cells generating PAF and causing T.g.HSP70-induced anaphylactic reaction were CD11b+ and CD11c+ cells, although the reaction was enhanced by marked IFN-γ production by CD11b+, CD11c+, CD4+ and CD8+ splenocytes. In the present study, the effects of T.g.HSP70 gene vaccine targeting peripheral dendritic cells were evaluated against T.g.HSP70-induced anaphylactic reaction in T. gondii-infected mice. C57BL/6 mice receiving T.g.HSP70 gene vaccine showed prolonged survival. Platelets of peripheral blood, which completely disappeared during the T.g.HSP70-induced anaphylactic reaction, were partially restored with the T.g.HSP70 gene vaccination. The T.g.HSP70-induced marked production of PAF and IFN-γ from splenocytes of infected mice during the T.g.HSP70-induced anaphylactic reaction was shown to decrease after the T.g.HSP70 gene vaccination. Thus, T.g.HSP70 gene vaccine induced protective immunity against T.g.HSP70-induced PAF-mediated lethal anaphylactic reaction in T. gondii-infected mice.  相似文献   

15.
16.
T细胞记忆的理论研究   总被引:1,自引:0,他引:1  
基于CD8+ T记忆细胞的线性和逆线性分化假说分别建立了数学模型,并研究了各种T细胞亚类的动力学.发现在优化剂量抗原入侵的条件下,两个模型均能产生记忆,并可较好地模拟实验结果.通过进一步模拟发现CD8+ T细胞记忆与抗原的存在紧密相关,再次证实了抗原在维持T细胞记忆中的作用.另外还讨论了记忆细胞寿命的问题.认为逆线性假说具有更强的反应性和记忆性.  相似文献   

17.

Background

The nature of the tumour microenvironment immune response in head and neck cancer patients has an important role in tumour development and metastasis, but it is unknown if this differs between cancer subsites or whether it is related to the peripheral immune response.

Methods

Immune cells (CD4, CD8, Foxp3) in head and neck squamous cell carcinoma tissue (HNSCC; n = 66), detected by immunohistochemistry, have been correlated with tumour subsite and immune cells in the peripheral circulation (CD4+CD25HighFoxp3+ Treg and CD4+ T cells), identified using flow cytometry.

Results

Oropharyngeal tumours had a greater number of infiltrating immune cells in both tumour and stroma compared with other subsites, but no difference was observed in the circulating levels. Immune cells in the stroma were positively related to those in the tumour with consistently higher levels in stroma. A strong relationship was found between the number of CD4+ and Foxp3+ cells but not between the number of CD8+ and Foxp3+ cells in the tumour. The number of Foxp3+ cells within the tumour was positively correlated with the percentage of circulating CD4+CD25High cells positive for Foxp3. Late stage laryngeal tumours showed a higher number of Foxp3+ lymphocytes compared with early stage malignancies, and oropharyngeal tumours had more CD4+ cells in node negative tumours compared with node positive ones.

Conclusion

The level of immune cell infiltration in head and neck squamous cell carcinoma appears to be subsite dependent residing primarily in the stroma and is likely to be dependent on the peripheral immune response.  相似文献   

18.
Summary Tumour-specific cytotoxic T lymphocytes (CTL) are usually obtained after immunization in vivo and restimulation of immune cells in vitro. We here describe the generation of syngeneic tumour-specific CTL within no more than 9 days by priming and restimulation in vivo. This is achieved only if the correct sites are used both for primary immunization (ear pinna) and for restimulation (peritoneal cavity). The kinetics of immune T cell induction and of the secondary response in vivo will be reported. While a secondary CTL response could be generated in the peritoneal cavity, this was not possible in the spleen, no matter which routes of antigen restimulation were used. Upon transfer of immune spleen cells into the peritoneal cavity but not into the spleen, a secondary response could be generated upon in situ restimulation, indicating the importance of the correct microenvironment for this type of response. The peritoneal effector cells were true T cells and recognized a tumour-associated antigen in association with the Kd major histocompatibility (MHC class I) antigen. Finally the activated tumour-specific peritoneal exudate cells were able to transfer protective immunity without exogenous interleukin-2 into normal syngeneic mice.  相似文献   

19.
Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self‐renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS‐derived erythroid cells is limited and the enucleation of ES/iPS‐derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell‐derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell‐derived orthochromatic erythroblasts (ES‐ortho), we found the chromatin of ES‐ortho was less condensed than that of CB CD34+ cell‐derived orthochromatic erythroblasts (CB‐ortho). At the molecular level, both RNA‐seq and ATAC‐seq analyses revealed that pathways involved in chromatin modification were down‐regulated in ES‐ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES‐ortho compared to that in CB‐ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell‐derived erythroid cells and may help to improve ex vivo RBC production from stem cells.  相似文献   

20.
T lymphocytes elicit specific responses after recognizing cognate antigen. However, antigen-experienced T cells can also respond to non-cognate stimuli, such as cytokines. CD4+ Foxp3+ regulatory T cells (Treg) exhibit an antigen-experienced-like phenotype. Treg can regulate T cell responses in an antigen-specific or bystander way, and it is still unclear as to which extent they rely on T cell receptor (TCR) signals. The study of the antigen response of Treg has been hampered by the lack of downstream readouts for TCR stimuli. Here we assess the effects of TCR signals on the expression of a classical marker of early T cell activation, CD69. Although it can be induced following cytokine exposure, CD69 is commonly used as a readout for antigen response on T cells. We established that upon in vitro TCR stimulation CD69 induction on Foxp3+ Treg cells was more dependent on signaling via soluble factors than on TCR activation. By contrast, expression of the activation marker Nur77 was only induced after TCR stimulation. Our data suggest that Treg are more sensitive to TCR-independent signals than Foxp3- cells, which could contribute to their bystander activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号