首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of angiotensin II and [Arg]vasopressin on cytosolic free Ca2+ concentration ([Ca2+]i) and phosphoinositide metabolism were studied in cultured aortic smooth muscle cells obtained from Wistar-Kyoto rats and their spontaneously hypertensive substrain. [Ca2+]i was measured using the fluorescent Ca2+ indicator quin2. No clear differences in basal [Ca2+]i were detected between cells derived from the two strains. High concentrations of angiotensin II (greater than or equal to 10 nM) and [Arg]vasopressin (greater than or equal to 100 nM) elicited large and rapid increases in [Ca2+]i, followed by a rapid return to control values. Low concentrations of these peptides (less than or equal to 1.0 nM) elicited small and slow increases in [Ca2+]i that persisted for minutes. These responses were blocked by specific antagonists for each of these peptides. Only high concentrations of angiotensin II caused [Ca2+]i increases in "Ca2+-free" medium, which suggested that high concentrations of angiotensin II could release Ca2+ from intracellular pools. A high concentration of angiotensin II and [Arg]vasopressin elicited progressive accumulations of inositol phosphates. Only high concentrations of angiotensin II caused inositol phosphate accumulation in Ca2+-free medium. Maximal accumulation of inositol phosphate elicited by angiotensin II and [Arg]vasopressin was found to be additive. A desensitization to the effects of both peptides on Ca2+ mobilization occurred despite the continued accumulation of inositol phosphates. These observations indicated that angiotensin II and [Arg]vasopressin interacted with independent receptors, both of which are linked to phosphoinositide breakdown and Ca2+ mobilization.  相似文献   

2.
Angiotensin II, catecholamines, and vasopressin are thought to stimulate hepatic glycogenolysis and gluconeogenesis via a cyclic AMP-independent mechanism that requires calcium ion. The present study explores the possibility that angiotensin II and vasopressin control the activity of regulatory enzymes in carbohydrate metabolism through Ca2+-dependent changes in their state of phosphorylation. Intact hepatocytes labeled with [32P]PO43- were stimulated with angiotensin II, glucagon, or vasopressin and 30 to 33 phosphorylated proteins resolved from the cytoplasmic fraction of the cell by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. Treatment of the cells with angiotensin II or vasopressin increased the phosphorylation of 10 to 12 of these cytosolic proteins without causing measurable changes in cyclic AMP-dependent protein kinase activity. Glucagon stimulated the phosphorylation of the same set of 11 to 12 proteins through a marked increase in cyclic AMP-dependent protein kinase activity. The molecular weights of three of the protein bands whose phosphorylation was increased by these hormones correspond to the subunit molecular weights of phosphorylase (Mr = 93,000), glycogen synthase (Mr = 85,000), and pyruvate kinase (Mr = 61,000). Two of these phosphoprotein bands were positively identified as phosphorylase and pyruvate kinase by affinity chromatography and immunoprecipitation, respectively. Incubation of hepatocytes in a Ca2+-free medium completely abolished the effects of angiotensin II and vasopressin on protein phosphorylation but did not alter those of glucagon. Treatment of hepatocytes with angiotensin II, glucagon, or vasopressin stimulated phosphorylase activity by 250 to 260%, inhibited glycogen synthase activity by 50%, and inhibited pyruvate kinase activity by 30 to 35% (peptides) to 70% (glucagon). The effects of angiotensin II and vasopressin on the activity of all three enzymes were completely abolished if the cells were incubated in a Ca2+-free medium while those of glucagon were not altered. The results imply that angiotensin II, catecholamines, and vasopressin control hepatic carbohydrate metabolism through a Ca2+-requiring, cyclic AMP-independent pathway that leads to the phosphorylation of important regulatory enzymes.  相似文献   

3.
The effect of vasopressin, angiotensin II and phorbol myristate acetate on the alpha 1-adrenergic action (induced by epinephrine + propranolol), was studied. We selected three conditions: (a) ureagenesis in medium without added calcium and containing 25 microM EGTA; (b) ureagenesis using cells from hypothyroid animals, and (c) gluconeogenesis from dihydroxyacetone. Under these conditions epinephrine + propranolol produces clear metabolic effects, whereas the vasopressor peptides do not (although they stimulate phosphoinositide turnover). It was observed that the vasopressor peptides and the active phorbol ester inhibited in a concentration-dependent fashion the effect of epinephrine + propranolol. It is suggested that activation of protein kinase C by phorbol esters or physiological stimuli (hormones that activate phosphoinositide turnover, such as vasopressin or angiotensin II) modulate the hepatocyte alpha 1-adrenergic responsiveness.  相似文献   

4.
Endothelin has steroidogenic activity in adrenal glomerulosa cells, as do two other vasoconstrictor peptides, angiotensin II and vasopressin. The steroidogenic activities of angiotensin II and vasopressin are probably mediated via the phosphatidylinositol-turnover pathway and associated changes in cytosolic Ca2+ concentration. Endothelin caused a steroidogenic response, which was small compared with that to angiotensin II and quantitatively similar to the vasopressin response. Cytosolic free Ca2+ responses were similarly higher to angiotensin II than to either of the other two peptides. However, total inositol phosphate responses to endothelin and angiotensin II were similar when these were measured over 20 min, and were quantitatively greater than the vasopressin response. A detailed study has been made of the phosphatidylinositol-turnover response to endothelin in comparison with responses to angiotensin II and vasopressin. Each of the three peptides produced a rapid and transient rise in Ins(1,4,5)P3 (max. 5-15 s), followed by a slow sustained rise. Ins(1,4,5)P3 was metabolized by both dephosphorylation and phosphorylation pathways, but the relative importance of the two metabolic pathways was different under stimulation by each of the three peptides. These findings show that adrenal glomerulosa cells can distinguish between the stimulation of phosphatidylinositol turnover by three different effectors. These differences in the pathway may be associated with the observed different steroidogenic and Ca2+ responses to the three peptides.  相似文献   

5.
When [3H]inositol prelabelled cultured bovine adrenal chromaffin cells were stimulated with 56 mM KCl (high K+), 300 microM carbamylcholine (CCh) or 10 microM angiotensin II (Ang II), a rapid accumulation of [3H]IP3 was observed. At the same time, high K+ or CCh induced rapid increases in 45Ca2+ uptake, but Ang II did not induce a significant 45Ca2+ uptake. The concentration-response curve for KCl-induced [3H]IP3 accumulation coincided well with that for KCl-induced 45Ca2+ uptake into the cells. Nifedipine, a Ca2+ channel antagonist, inhibited the high K(+)-induced [3H]IP3 accumulation and 45Ca2+ uptake with a similar potency. Nifedipine at a similar concentration range also inhibited CCh-induced 45Ca2+ uptake. Although nifedipine inhibited CCh-induced [3H]IP3 accumulation, the potency was approximately 300-fold less than that for the inhibition of 45Ca2+ uptake. Nifedipine failed to affect the Ang II-induced [3H]IP3 accumulation. BAY K 8644 (2 microM), a Ca2+ channel activator, plus partially depolarizing concentration of KCl (14 mM), induced 45Ca2+ uptake and [3H]IP3 accumulation. Ionomycin (1 microM and 10 microM), a Ca2+ ionophore, also induced 45Ca2+ uptake and [3H]IP3 accumulation in a concentration-dependent manner. Pretreatment of the cells with protein kinase C activator, 100 nM 12-O-tetradecanoyl phorbol-13-acetate, for 10 min, partially inhibited CCh and Ang II-induced [3H]IP3 accumulation, but failed to inhibit the high K(+)-induced accumulation. Furthermore, the effects of high K+ and Ang II on the IP3 accumulation was additive. Ang II and CCh induced a rapid and transient increase in inositol 1,4,5-trisphosphate (1,4,5-IP3) accumulation (5 s) followed by a slower accumulation of inositol 1,3,4-trisphosphate (1,3,4-IP3). High K+ evoked an increase in 1,3,4-IP3 accumulation but obvious accumulation of 1,4,5-IP3 could not be detected. In Ca2(+)-depleted medium, high K(+)-induced [3H]IP3 accumulation was completely abolished, whereas [3H]IP3 accumulation induced by CCh and Ang II was partially inhibited. These results demonstrate the existence of the Ca2+ uptake-triggered mechanism of IP3 accumulation represented by high K+, and also the Ca2+ uptake-independent mechanism of IP3 accumulation represented by Ang II in cultured bovine adrenal chromaffin cells. Mechanism of CCh-induced IP3 accumulation has an intermediate property between those of high K+ and Ang II.  相似文献   

6.
Ouabain-sensitive 86Rb+ uptake by isolated rat hepatocytes was studied to elucidate how Ca2+-mobilizing hormones stimulate the Na+-pump. Stimulation of this uptake was observed with concentrations of vasopressin ([8-arginine]vasopressin, AVP), angiotensin II, and norepinephrine which elicited Ca2+ mobilization and phosphorylase activation. These results suggested that changes in cytosolic Ca2+, mediated by inositol trisphosphate, might trigger sodium pump stimulation by AVP. However, in hepatocytes incubated in Ca2+-free Krebs-Henseleit buffer, Na+-pump activity was not altered over 15 min by either 1.5 mM EGTA or 1.5 mM Ca2+. Furthermore, incubation of cells in 5 mM EGTA for 15-30 min drastically impaired the ability of AVP to increase cytosolic Ca2+, but only modestly attenuated AVP-stimulated Na+-pump activity. Two tumor promoters, phorbol myristate acetate (PMA) and mezerein, stimulated Na+/K+-ATPase-mediated transport activity. Similarly, addition of synthetic diacylglycerols or of exogenous phospholipase C from Clostridium perfringens to increase endogenous diacylglycerol levels also resulted in a stimulation of the Na+-pump in the absence of changes in cytosolic or total cellular Ca2+ levels. Stimulation of the Na+-pump by the combination of maximal concentrations of PMA and AVP did not produce an additive response, and both agents displayed a transient time course, suggesting that the two agents share a common mechanism. Stimulation of the Na+-pump by AVP and PMA was not blocked by amiloride analogs which inhibit Na+/H+ exchange, but these compounds blocked the action of insulin. These data suggest that the elevated Na+/K+-ATPase-mediated transport activity observed in hepatocytes following exposure to Ca2+-mobilizing hormones is a consequence of stimulated diacylglycerol formation and may involve protein kinase C.  相似文献   

7.
Glucagon was added to isolated rat hepatocytes, either alone or together with vasopressin or angiotensin II, and the effects on the initial 45Ca2+ uptake rate were investigated. Addition of glucagon alone which increased cyclic AMP content of the cells slightly increased the initial 45Ca2+ uptake rate. When glucagon was added together with vasopressin or angiotensin II--both of which when added separately increase the initial 45Ca2+ uptake rate but did not affect the cellular content of cyclic AMP--the measured initial 45Ca2+ uptake rate was larger than the sum of that seen with each hormone alone. This indicates that glucagon and Ca2+-linked hormones synergistically enhanced the Ca2+ influx in rat hepatocytes. These effects of glucagon can be mimicked by dibutyryl cyclic AMP or forskolin, suggesting that cyclic AMP augments both the resting Ca2+ and the vasopressin- or angiotensin II-stimulated influx. Measurement of the initial 45Ca2+ uptake rate as a function of the extracellular Ca2+ concentration indicated that the increase in the Ca2+ influx resulting from single or combined glucagon and vasopressin administration occurred through a homogeneous population of Ca2+ gates. These hormones were found to raise both the apparent Km for external Ca2+ and the apparent Vmax of the Ca2+ influx. The maximal increase in these two parameters was observed when the two hormones were added together. This suggests that glucagon and vasopressin synergistically stimulate the same Ca2+ gating mechanism. The dose-response curves for the action of glucagon or vasopressin applied in the presence of increasing concentrations of vasopressin or glucagon, respectively, showed that each hormone increases the maximal response to the other without affecting its ED50. It is proposed that glucagon and the Ca2+-linked hormones control the cellular concentration of two intermediates which are both necessary to allow Ca2+ entry into the cells.  相似文献   

8.
1. In hepatocytes from starved rats, vasopressin, angiotensin (angiotensin II) and oxytocin stimulated gluconeogenesis from lactate by 25--50%; minimal effective concentrations were about 0.02pM, 1 nM and 0.2 nM respectively. 2. Vasopressin and angiotensin also stimulated gluconeogenesis from alanine, pyruvate, serine and glycerol. EGTA decreased gluconeogenesis from these substrates. 3. Hormonal stimulation of gluconeogenesis from lactate was abolished in the absence of extracellular Ca2+. 4. Insulin did not prevent stimulation of gluconeogenesis by vasopressin or angiotensin. 5. The potency of the stimulatory effects of vasopressin and angiotensin on hepatic gluconeogenesis suggests they are operative in vivo. Also, the data suggest that Ca2+ plays a role in the stimulation by these hormones.  相似文献   

9.
The mechanism of Ca2+ influx stimulated by arginine vasopressin (AVP) was studied in cultured rat smooth muscle cells. AVP stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel. NaF, a GTP-binding protein activator, mimicked the AVP-stimulated 45Ca2+ influx. The 45Ca2+ influx stimulated by a combination of AVP and NaF was not additive. The affinity of AVP receptor was decreased by guanosine 5'-O-(3-thiotriphosphate). Pertussis toxin failed to affect the AVP-stimulated 45Ca2+ influx. AVP did not stimulate cAMP production, but increased inositol trisphosphate generation. Both AVP-stimulated 45Ca2+ influx and inositol trisphosphate generation were inhibited by neomycin, a phospholipase C inhibitor, in a dose-dependent manner, and the patterns of both inhibitions were similar. These results suggest that, in rat smooth muscle cells, AVP-stimulated Ca2+ influx is mediated exclusively through phosphoinositide hydrolysis.  相似文献   

10.
The stimulation of hepatic glycogenolysis by the Ca2+-dependent hormones phenylephrine, vasopressin and angiotensin II was studied as a function of intracellular and extracellular Ca2+. In the isolated perfused rat liver the decline in glucose formation was monophasic ('half-life' approximately equal to 3 min) with vasopressin (1 nM) or angiotensin II (0.05 microM), but biphasic (half-life of 4.8 min and 17.6 min) in the presence of the alpha-agonist phenylephrine (0.01 mM), indicating either a different mode of mobilization or the mobilization of additional intracellular calcium stores. Under comparable conditions an elevated [Ca2+] level was maintained in the cytosol of hepatocytes for at least 10 min in the presence of phenylephrine, but not vasopressin. Titration experiments performed in the isolated perfused liver to restore cellular calcium revealed differences in the hormone-mediated uptake of Ca2+. The onset in glucose formation above that seen in the absence of exogenous calcium occurred at approximately 30 microM or 70-80 microM Ca2+ in the presence of phenylephrine or vasopressin respectively. The shape of the response curve was sigmoidal for vasopressin and angiotensin II, but showed a distinct plateau between 0.09 mM and 0.18 mM in the presence of phenylephrine. The plateau was also observed at phenylephrine concentrations as low as 0.5 microM. The formation of plateaus observed after treatment of the liver with A 23187, but not after EGTA, is taken as an indication that intracellular calcium stores are replenished. A participation of the mitochondrial compartment could be excluded by pretreatment of the liver with the uncoupler 2,4-dinitrophenol. Differences in the Ca2+ dependence of the glycogenolytic effects of these hormones were also revealed by kinetic analysis. It is concluded that phenylephrine differs from vasopressin and angiotensin II in that, in addition to a more common, non-mitochondrial pool, which is also responsive to the vasoactive peptides, the agonist mobilizes Ca2+ from a second, non-mitochondrial pool. The results are consistent with the proposal that Ca2+ transport across subcellular membranes may be subject to different hormonal control.  相似文献   

11.
We have measured intracellular free Ca2+ concentration in rat and guinea pig ventricular myocytes using the fluorescent Ca2+-indicator quin2. Our results indicate a resting concentration in heart cells that is considerably lower than previous estimates. The mean value of 137 nM for rat ventricle that we have recorded is consistent with the hypothesis that resting intracellular [Ca2+] is controlled by a voltage-dependent, sarcolemmal exchange mechanism. Furthermore, we show that activation of plasma membrane Ca2+-channels is involved when intracellular free Ca2+ increases in response to K+-depolarization.  相似文献   

12.
The effect of Ca2+-mobilizing hormones, vasopressin, angiotensin II and the alpha-adrenergic agonist phenylephrine, on the metabolic flux through the tricarboxylic acid cycle was investigated in isolated perfused rat livers. All three Ca2+-mobilizing agonists stimulated 14CO2 production and gluconeogenesis in livers of 24-h-fasted rats perfused with [2-14C]pyruvate. Prazosin blocked the phenylephrine-elicited stimulation of 14CO2 and glucose production from [2-14C]pyruvate whereas the alpha 2-adrenergic agonist, BHT-933, did not affect the rates of 14CO2 and glucose production from [2-14C]pyruvate indicating that the phenylephrine-mediated response involved alpha 1-adrenergic receptors. Phenylephrine, vasopressin and angiotensin II stimulated 14CO2 production from [2-14C]acetate in livers derived from fed rats but not in livers of 24-h-fasted rats. In livers of 24-h-fasted rats, perfused with [2-14C]acetate, exogenously added pyruvate was required for an increase in the rate of 14CO2 production during phenylephrine infusion. This last observation suggests increased pyruvate carboxylation as one of the mechanisms involved in stimulation of tricarboxylic acid cycle activity by the Ca2+-mobilizing agonists, vasopressin, angiotensin II and phenylephrine.  相似文献   

13.
The Na+/K+ pump in rat hepatocytes is stimulated in response to Ca2+-mobilizing hormones such as [arginine]vasopressin (AVP), angiotensin II and adrenaline, as well as tumour promoters such as 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). The ability of these agents to increase cellular contents of diacylglycerol and activate protein kinase C may be necessary to observe this response. In the present work, ouabain-sensitive 86Rb+ uptake was studied in isolated rat hepatocytes to help to explain why stimulation of the Na+/K+ pump by Ca2+-mobilizing hormones and tumour promoters is not temporally sustained relative to other hormone responses. A transient stimulation (3-4 min) of the Na+/K+ pump was observed in hepatocytes exposed to high (10 nM), but not low (0.1 nM), concentrations of AVP. Experiments with the Ca2+ chelator EGTA and the Na+ ionophore monensin indicate that the rapid secondary decrease in Na+/K+-pump activity which occurs after AVP stimulation is not due to changes in cytosolic Ca2+ and Na+ concentrations. When added after the stimulation and rapid decrease in Na+/K+-pump activity induced in hepatocytes by a high concentration of AVP, a second challenge with AVP or PMA failed to stimulate the pump. Similarly, previous exposure of hepatocytes to angiotensin, adrenaline or PMA attenuated the subsequent Na+/K+-pump responses to AVP and PMA. In contrast, previous exposure to AVP had no significant effect on subsequent stimulation of the Na+/K+-pump by monensin, glucagon, forskolin or 8-p-chlorophenylthio cyclic AMP. In addition, exposure to monensin had no effect on subsequent responses to AVP and PMA. These data indicate that high concentrations of Ca2+-mobilizing hormones and PMA result in heterologous desensitization of the hepatic Na+/K+ pump to subsequent stimulation by Ca2+-mobilizing hormones and PMA, but not by cyclic-AMP-dependent agonists or monensin.  相似文献   

14.
Studies were performed to investigate regulatory pathways of loop diuretic-sensitive Na+/K+/Cl- cotransport in cultured rat glomerular mesangial cells. Angiotensin II, alpha-thrombin, and epidermal growth factor (EGF) all stimulated Na+/K+/Cl- cotransport in a concentration-dependent manner. Pertussis toxin pretreatment reduced the effects of angiotensin II and alpha-thrombin but not that of EGF. Addition of the protein kinase C inhibitor staurosporine or down-regulation of protein kinase C by prolonged incubation with phorbol 12-myristate 13-acetate partially reduced the effects of angiotensin II and alpha-thrombin and completely blunted the phorbol 12-myristate 13-acetate-induced stimulation of Na+/K+/Cl- cotransport but did not affect EGF-induced stimulation. Exposure of cells to a calcium ionophore, A23187, resulted in a concentration-dependent stimulation of Na+/K+/Cl- cotransport, which was not significantly inhibited by down-regulation of protein kinase C but was completely inhibited by the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). Stimulation of the cotransport by angiotensin II or alpha-thrombin was also partially inhibited by W-7. Inhibitory effects of protein kinase C down-regulation and W-7 were additive and, when combined, produced a complete inhibition of angiotensin II-induced stimulation of Na+/K+/Cl- cotransport. In saponin-permeabilized mesangial cells, phosphorylation of a synthetic decapeptide substrate for Ca2+/calmodulin-dependent kinase II, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH3, was demonstrated. Maximal activation of the decapeptide substrate phosphorylation required the presence of Ca2+ and calmodulin and was dependent on Ca2+ concentration. These findings indicate that stimulation of Na+/K+/Cl- cotransport by angiotensin II and alpha-thrombin is mediated by protein kinase C and Ca2+/calmodulin-dependent kinases whereas the action of EGF is mediated by other pathways.  相似文献   

15.
The effects of different concentrations of the fluorometric Ca2+ probes, fura-2 and indo-1, on Ca2+ transients in cultured rat aortic smooth muscle cells were examined. When stimulated with the agonists, angiotensin II and arginine vasopressin, cells incubated with low concentrations of fura-2 or indo-1 (less than 1 microM) produced Ca2+ transients characterized by a small increase followed by a dramatic decrease in fluorescence below the original baseline. This effect of agonists was concentration-dependent, reversible, and blocked by receptor antagonists. In contrast to the agonists, stimulation of Ca2+ transients with depolarizing concentrations of K+ or with caffeine did not produce decreases in fluorescence and Ca2+ levels at any loading concentration of probe. The decrease in Ca2+ observed with agonists was dependent on the presence of extracellular Na+. These data suggest that under certain loading conditions, fluorescent Ca2+ indicators measure agonist-stimulated Ca2+ efflux mediated by a Na+/Ca2+ exchange mechanism.  相似文献   

16.
Adrenal glomerulosa cell is a suitable model for a comparative study of signal transducing mechanisms since its secretory activity is regulated by at least three different mechanisms: the adenylate cyclase-cAMP system (for ACTH), the voltage-dependent Ca2+ channel (for K+ and perhaps for angiotensin II) and the inositol 1,4,5-trisphosphate-Ca2+ system (for angiotensin II and vasopressin). The role of inositol phosphates, extracellular Ca2+ and protein kinase C in the induction and sustaining of aldosterone production by cells exposed to angiotensin II is critically reviewed.  相似文献   

17.
Specific binding sites of high affinity and low capacity for 125I-angiotensin II have been identified in a membrane fraction derived from arterial arcades of the rat mesentery. Heterogeneity of binding sites and extensive tracer degradation necessitated the use of nonlinear regression methods for the analysis of radioligand binding data. Forward and reverse rate constants for the high affinity sites obtained by three experimental approaches were in good agreement and gave a dissociation equilibrium constant (Kd) of 19-74 pM (95% confidence interval). Affinities for a number of angiotensin-related peptides calculated from competitive binding curves were in the order 125I-angiotensin II = angiotensin II greater than angiotensin III greater than [Sar1,Ile8]angiotensin II greater than [Sar1,Gly8]angiotensin II. Angiotensin I and biochemically unrelated peptides had virtually no effect on binding of tracer angiotensin II. The divalent cations Mn2+, Mg2+ and Ca2+ stimulated 125I-angiotensin II binding at concentrations of 2-10 mM, as did Na+ at 50-100 mM. In the presence of Na+ or Li+, K+ had a biphasic effect. The chelating agents EDTA and EGTA were inhibitory, as were the thiol reagents dithiothreitol and cysteine. This study defined angiotensin II binding sites in a vascular target tissue of sufficiently high affinity to interact rapidly with plasma angiotensin II at physiological concentrations.  相似文献   

18.
Previous studies have shown that vascular endothelial cells exhibit a highly active Na-K-Cl cotransport system that is regulated by a variety of vasoactive hormones and neurotransmitters, suggesting that the cotransporter may play an important role in endothelial cell function. In this study, the regulation of endothelial cell Na-K-Cl cotransport was further investigated by probing the stimulus-transfer pathway by which vasoactive agents stimulate the cotransporter. Specifically, three peptides previously shown to stimulate cotransport activity (angiotensin II, vasopressin, and bradykinin) were evaluated. Na-K-Cl cotransport was assessed in cultured bovine aortic endothelial cells as bumetanide-sensitive K+ influx. Stimulation of Na-K-Cl cotransport by angiotensin II, vasopressin, or bradykinin was found to be reduced either by removal of extracellular Ca2+ or by treatment of the cells with 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate or 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. In addition, the calmodulin antagonist W-7 was found to prevent stimulation of endothelial cell Na-K-Cl cotransport by the three peptides. These findings suggest that regulation of endothelial cell cotransport by these vasoactive peptides may be both Ca(2+)- and calmodulin-dependent. Angiotensin II, vasopressin, and bradykinin were also found to elevate phosphatidylinositol hydrolysis in the cultured endothelial cells. Thus, the possibility that regulation of endothelial Na-K-Cl cotransport by these vasoactive peptides also involves diacylglycerol activation of protein kinase C was investigated. A 10-min exposure of the endothelial cells to low doses of phorbol 12-myristate 13-acetate was found to reduce Na-K-Cl cotransport whether in the presence or absence of angiotensin II, vasopressin, or bradykinin. However, down-regulation of protein kinase C by a 40-h exposure to higher doses of the phorbol ester was found to elevate Na-K-Cl cotransport activity under both control and agonist-stimulated conditions, indicating that activation of protein kinase C results in inhibition of endothelial cell Na-K-Cl cotransport. Thus, protein kinase C activation may serve as negative feedback in the stimulus-transfer pathway by which these agonists regulate endothelial cell Na-K-Cl cotransport.  相似文献   

19.
We have shown previously that exposure of a non-transformed continuous line of rat liver epithelial (WB) cells to epidermal growth factor (EGF), adrenaline, angiotensin II or [Arg8]vasopressin results in an accumulation of the inositol phosphates InsP1, InsP2 and InsP3 [Hepler, Earp & Harden (1988) J. Biol. Chem. 263, 7610-7619]. Studies were carried out with WB cells to determine whether the EGF receptor and other, non-tyrosine kinase, hormone receptors stimulate phosphoinositide hydrolysis by common, overlapping or separate pathways. The time courses for accumulation of inositol phosphates in response to angiotensin II and EGF were markedly different. Whereas angiotensin II stimulated a very rapid accumulation of inositol phosphates (maximal by 30 s), increases in the levels of inositol phosphates in response to EGF were measurable only following a 30 s lag period; maximal levels were attained by 7-8 min. Chelation of extracellular Ca2+ with EGTA did not modify this relative difference between angiotensin II and EGF in the time required to attain maximal phospholipase C activation. Under experimental conditions in which agonist-induced desensitization no longer occurred in these cells, the inositol phosphate responses to EGF and angiotensin II were additive, whereas those to angiotensin II and [Arg8]vasopressin were not additive. In crude WB lysates, angiotensin II, [Arg8]vasopressin and adrenaline each stimulated inositol phosphate formation in a guanine-nucleotide-dependent manner. In contrast, EGF failed to stimulate inositol phosphate formation in WB lysates in the presence or absence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]), even though EGF retained the capacity to bind to and stimulate tyrosine phosphorylation of its own receptor. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate the inhibitory guanine-nucleotide regulatory protein of adenylate cyclase (Gi), had no effect on the capacity of EGF or hormones to stimulate inositol phosphate accumulation. In intact WB cells, the capacity of EGF, but not angiotensin II, to stimulate inositol phosphate accumulation was correlated with its capacity to stimulate tyrosine phosphorylation of the 148 kDa isoenzyme of phospholipase C. Taken together, these findings suggest that, whereas angiotensin II, [Arg8]vasopressin and alpha 1-adrenergic receptors are linked to activation of one or more phospholipase(s) C by an unidentified G-protein(s), the EGF receptor stimulates phosphoinositide hydrolysis by a different pathway, perhaps as a result of its capacity to stimulate tyrosine phosphorylation of phospholipase C-gamma.  相似文献   

20.
The effects of submaximal doses of AlF4- to mobilize hepatocyte Ca2+ were potentiated by glucagon (0.1-1 nM) and 8-p-chlorophenylthio-cAMP. A similar potentiation by glucagon of submaximal doses of vasopressin, angiotensin II, and alpha 1-adrenergic agonists has been previously shown (Morgan, N. G., Charest, R., Blackmore, P. F., and Exton, J. H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4208-4212). When hepatocytes were pretreated with the protein kinase C activator 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), the effects of AlF4- to mobilize Ca2+, increase myo-inositol 1,4,5-trisphosphate (IP3), and activate phosphorylase were attenuated. Treatment of hepatocytes with PMA likewise inhibits the ability of vasopressin, angiotensin II, and alpha 1-adrenergic agonists to increase IP3 and mobilize Ca2+ (Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F. (1985) J. Biol. Chem. 260, 2844-2851). In contrast, the ability of AlF4- or angiotensin II to lower cAMP or inhibit glucagon-mediated increases in cAMP was unaffected by PMA. The ability of AlF4- to lower cAMP was attenuated in hepatocytes from animals treated with islet-activating protein, whereas Ca2+ mobilization was not modified. These results suggest that the lowering of cAMP induced by AlF4- and angiotensin II was mediated by the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase, whereas Ca2+ mobilization was not. Addition of glucagon, forskolin, or 8CPT-cAMP to hepatocytes raised IP3 and mobilized Ca2+. Both effects were blocked by PMA pretreatment, whereas cAMP and phosphorylase a levels were only minimally affected by PMA. The mobilization of Ca2+ induced by cAMP in hepatocytes incubated in low Ca2+ media was not additive with that induced by maximally effective doses of vasopressin, angiotensin II, or alpha 1-adrenergic agonists, indicating that the Ca2+ pool(s) affected by agents which increase cAMP is the same as that affected by Ca2+-mobilizing hormones which do not increase cAMP. These findings support the proposal that AlF4- mimics the effects of the Ca2+-mobilizing hormones in hepatocytes by activating a guanine nucleotide-binding regulatory protein (Np) which couples the hormone receptors to a phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphodiesterase. They also suggest that Np, PIP2 phosphodiesterase, or a factor involved in their interaction is activated following phosphorylation by cAMP-dependent protein kinase and inhibited after phosphorylation by protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号