首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We described the use of a new chemical substance Sodium nucleinate (SN) as an immunomodulatory substance exhibiting antiinflammatory properties. Sodium nucleinate (SN) registrated in Russian Federation as Tamerit, is 2-amino-1,2,3,4-tetrahydrophthalazine-1,4-dione sodium salt dihydrate, derivative of well known chemical substance luminol. To comprehend the mechanisms of SN immunomodulatory activity, we examined the SN modulation of the oxidative burst responses of whole blood human monocytes and polimorphonuclear cells (PMC) stimulated with phorbol 12-myristate 13-acetate (PMA) or E. coli suspension in vitro. SN did not inhibit the proportion of neutrophils and monocytes phagocytosing E. coli. Oxidative burst responses of monocytes stimulated with PMA were strongly inhibited at SN concentration ranging from 10-500 mg/ml, less efficient inhibitor was SN in E. coli stimulated monocytes (inhibition range was from 50-500 mg/ml SN). SN inhibited PMC oxidative burst only in range 100-500 mg/ml SN. In conclusion, we found SN as an efficient inhibitor of oxidative burst in monocytes. Since ROS generation in monocytes/macrophages has been found to be important for LPS-driven production of several proinflammatory cytokines, SN may exsert its antiinflammatory effects through monocyte/macrophage oxidative burst inhibition.  相似文献   

2.
Sepsis accounts for the majority of fatal casualties in critically ill patients, because extensive research failed to significantly improve appropriate therapy strategies. Thus, understanding molecular mechanisms initiating the septic phenotype is important. Symptoms of septic disease are often associated with monocyte/macrophage desensitization. In this study, we provide evidence that a desensitized cellular phenotype is characterized by an attenuated oxidative burst. Inhibition of the oxidative burst and depletion of protein kinase C alpha (PKC alpha) were correlated in septic patients. To prove that PKC alpha down-regulation indeed attenuated the oxidative burst, we set up a cell culture model to mimic desensitized monocytes/macrophages. We show that LPS/IFN-gamma-treatment of RAW264.7 and U937 cells lowered PKC alpha expression and went on to confirm these data in primary human monocyte-derived macrophages. To establish a role of PKC alpha in cellular desensitization, we overexpressed PKC alpha in RAW264.7 and U937 cells and tested for phorbolester-elicited superoxide formation following LPS/IFN-gamma-pretreatment. Inhibition of the oxidative burst, i.e., cellular desensitization, was clearly reversed in cells overexpressing PKC alpha, pointing to PKC alpha as the major transmitter in eliciting the oxidative burst in monocytes/macrophages. However, PKC alpha inactivation by transfecting a catalytically inactive PKC alpha mutant attenuated superoxide formation. We suggest that depletion of PKC alpha in monocytes from septic patients contributes to cellular desensitization, giving rise to clinical symptoms of sepsis.  相似文献   

3.
The innate immune response to bovine Babesia bovis infection in vivo has not previously been established. We used assays measuring phagocytosis and oxidative burst to investigate the immune response because they are indicative of the innate antimicrobial capacity of monocytes and neutrophils. Monocyte and neutrophil phagocytosis is thought to be non-specific in nature and so the phagocytosis of either opsonised Zymosan or Escherichia coli was used to indicate the non-specific phagocytic capacity of monocytes and neutrophils ex vivo. The kinetics of both phagocytic and oxidative burst activity in monocytes and neutrophils were followed twice weekly from pre-inoculation (day 0) through to 31 days after inoculation. Peripheral blood monocytes were found to display a pronounced oxidative burst, but a suppressed capacity to phagocytose during a primary infection. On the other hand, neutrophils exhibited an increased phagocytic capacity and reduced oxidative activity during a primary infection. These findings identified considerable antimicrobial activity evident in peripheral blood monocytes and neutrophils from cattle exposed to B. bovis as a primary exposure. This elevated antimicrobial activity was coincident with the time that parasite numbers peaked in the circulation and occurred prior to parasite clearance. These results suggest that peripheral blood monocytes and neutrophils are active mediators in the innate immune response to a primary B. bovis.  相似文献   

4.
cAMP mediates its intracellular effects through activation of protein kinase A (PKA), nucleotide-gated ion channels, or exchange protein directly activated by cAMP (Epac). Although elevation of cAMP in lymphocytes leads to suppression of immune functions by a PKA-dependent mechanism, the effector mechanisms for cAMP regulation of immune functions in monocytes and macrophages are not fully understood. In this study, we demonstrate the presence of Epac1 in human peripheral blood monocytes and activation of Rap1 in response to cAMP. However, by using an Epac-specific cAMP analog (8-CPT-2'-O-Me-cAMP), we show that monocyte activation parameters such as synthesis and release of cytokines, stimulation of cell adhesion, chemotaxis, phagocytosis, and respiratory burst are not regulated by the Epac1-Rap1 pathway. In contrast, activation of PKA by a PKA-specific compound (6-Bnz-cAMP) or physiological cAMP-elevating stimuli like PGE(2) inhibits monocyte immune functions. Furthermore, we show that the level of Epac1 increases 3-fold during differentiation of monocytes into macrophages, and in monocyte-derived macrophages cAMP inhibits FcR-mediated phagocytosis via both PKA and the Epac1-Rap1 pathway. However, LPS-induced TNF-alpha production is only inhibited through the PKA pathway in these cells. In conclusion, the Epac1-Rap1 pathway is present in both monocytes and macrophages, but only regulates specific immune effector functions in macrophages.  相似文献   

5.
Although monocytes represent an essential part of the host defence system, their accumulation and prolonged stimulation could be detrimental and may aggravate chronic inflammatory diseases. The present study has explored the less-understood immunomodulatory effects of mesenchymal stem cells on monocyte functions. Isolated purified human monocytes were co-cultured with human umbilical cord-derived mesenchymal stem cells under appropriate culture conditions to assess monocytes’ vital functions. Based on the surface marker analysis, mesenchymal stem cells halted monocyte differentiation into dendritic cells and macrophages and reduced their phagocytosis functions, which rendered an inability to stimulate T-cell proliferation. The present study confers that mesenchymal stem cells exerted potent immunosuppressive activity on monocyte functions such as differentiation, phagocytosis and Ag presentation; hence, they promise a potential therapeutic role in down-regulating the unwanted monocyte-mediated immune responses in the context of chronic inflammatory diseases.  相似文献   

6.
Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.  相似文献   

7.
Platelet factor 4 (PF4; CXCL4) is an abundant platelet alpha-granule CXC chemokine with unique functions. Although lacking a chemotactic activity, PF4 initiates a signal transduction cascade in human monocytes leading to the induction of a broad spectrum of acute and delayed functions including phagocytosis, respiratory burst, survival, and the secretion of cytokines. Surprisingly, although these monocyte functions are well defined, only very limited information exists on the specific signaling pathways that are involved in the regulation of these biological responses. By using specific inhibitors and direct phosphorylation/activation studies, we show in the present study that PF4-mediated respiratory burst is dependent on a very rapid activation of PI3K, Syk, and p38 MAPK. Moreover, monocyte survival and differentiation instead is controlled by a delayed activation of Erk, with an activity peak after 6 h of stimulation. The inhibition of Erk completely reverted PF4-mediated protection against apoptosis. Finally, even though JNK is rapidly activated in PF4-treated monocytes, it is dispensable for the regulation of survival and respiratory burst. However, PF4-induced up-regulation of chemokine and cytokine mRNA and protein requires a sustained activation of JNK and Erk. Taken together, PF4-stimulated immediate monocyte functions (oxygen radical formation) are regulated by p38 MAPK, Syk, and PI3K, whereas delayed functions (survival and cytokine expression) are controlled by Erk and JNK.  相似文献   

8.
Platelet factor 4 (PF-4), a platelet-derived CXC chemokine, has been shown to induce the differentiation of monocytes into a subset of macrophages that lack the expression of HLA-DR Ag. This suggests a potential role for PF-4 in the modulation of monocyte-dependent T cell activation. Using an Ag-specific stimulation model in which T cells were cocultured with monocytes in the presence of recall Ags, we could show that under these conditions PF-4-treatment caused a strong decrease of T cell proliferation as well as of IFN-gamma release. However, inhibition of T cell functions such as proliferation, IL-2 release, and IL-2 mRNA production did also occur when isolated T cells were activated in the absence of monocytes with immobilized Abs directed against CD3 in combination with cross-linked anti-CD28 Abs. The effect could be reversed when low concentrations of exogenous IL-2 instead of anti-CD28 were used as a costimulus in combination with anti-CD3 Abs. Further evidence for direct modulation of T cell function by PF-4 was obtained by the detection of specific binding sites for the chemokine on the surface of these cells. Taken together, our results show that specific binding of PF-4, resulting in the down-regulation of the IL-2-release correlates with the inhibition of functions in activated T cells.  相似文献   

9.
Prompt phagocytosis of apoptotic cells prevents inflammatory and autoimmune responses to dying cells. We have previously shown that the blood anticoagulant factor protein S stimulates phagocytosis of apoptotic human B lymphoma cells by human monocyte-derived macrophages. In this study, we show that protein S must first undergo oxidative activation to stimulate phagocytosis. Binding of human protein S to apoptotic cells or to phosphatidylserine multilamellar vesicles promotes auto-oxidation of Cys residues in protein S, resulting in covalent, disulfide-linked dimers and oligomers that preferentially bind to and activate the human Mer tyrosine kinase (MerTK) receptor on the macrophages. The prophagocytic activity of protein S is eliminated when disulfide-mediated oligomerization is prevented, or when MerTK is blocked with neutralizing Abs. Protein S oligomerization is independent of phospholipid oxidation. The data suggest that membranes containing phosphatidylserine serve as a scaffold for protein S-protein S interactions and that the resulting auto-oxidation and oligomerization is required for the prophagocytic activity of protein S. In this way, apoptotic cells facilitate their own uptake by macrophages. The requirement for oxidative modification of protein S can explain why this abundant blood protein does not constitutively activate MerTK in circulating monocytes and tissue macrophages.  相似文献   

10.
The daily clearance of physiologically dying cells is performed safely mainly by cells in the mononuclear phagocyte system. They can recognize and engulf dying cells utilizing several cooperative mechanisms. In our study we show that the expression of a broad range of apopto-phagocytic genes is strongly up-regulated during differentiation of human monocytes to macrophages with different donor variability. The glucocorticoid dexamethasone has a profound effect on this process by selectively up-regulating six genes and down-regulating several others. The key role of the up-regulated mer tyrosine kinase (Mertk) in dexamethasone induced enhancement of phagocytosis could be demonstrated in human monocyte derived macrophages by gene silencing as well as blocking antibodies, and also in a monocyte-macrophage like cell line. However, the additional role of other glucocorticoid induced elements must be also considered since the presence of autologous serum during phagocytosis could almost completely compensate for the blocked function of Mertk.  相似文献   

11.
The AGAPEPAEPAQPGVY proline-rich polypeptide (PRP) was isolated from neurosecretory granules of the bovine neurohypophysis; it is produced by N. supraopticus and N. paraventricularis. PRP possesses immune-modulating activity, preventing the death of Gram-negative bacteria-infected mice. Here we show that PRP does not affect human peripheral blood neutrophlis and monocytes phagocytosis but dramatically enhances spontaneous or fMLP- and PMA-induced, and also phagocytosis-dependent, oxidative burst. We demonstrated the regulatory role of PRP on the oxidative burst induction of normal and relapsing inflammatory disease (Behcets disease and familial Mediterranean fever) neutrophils and monocytes. Our results suggest a previously undescribed role for the hypothalamic peptide within primary activated neutrophils and monocytes, since we provide evidence that PRP can differentially regulate both chemotaxis- and phagocytosis-dependent oxidative burst in normal and inflammatory disease effector cells.  相似文献   

12.
The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis.  相似文献   

13.
14.
Ingestion by phagocytes is known to be markedly enhanced by physiologic signals such as cytokines and extracellular matrix proteins which may be found in inflammatory sites. Little investigation has been made of mechanisms that may depress this increased rate of phagocytosis during resolution of inflammation. We show that adenosine can act as an inhibitor of phagocytosis by macrophages derived from in vitro culture of human peripheral blood monocytes. Adenosine (Ado) is equally effective at inhibiting IgG Fc and complement-mediated phagocytosis. However, Ado has no effect on phagocytosis by freshly isolated monocytes. Inhibition by Ado begins after 2 days in culture and reaches a plateau by 5 days; these kinetics of induction of inhibition of phagocytosis parallel an increase in specific Ado binding to the macrophage plasma membrane. Ado binds to cultured monocytes with a Kd of 6 microM. This affinity and the observation that 2-chloroadenosine and 5'-N-ethylcarboxamidadenosine are the most potent inhibitors of phagocytosis suggest that the Ado receptors expressed during monocyte differentiation are of the A2 type. The inhibition of phagocytosis may be mediated by cAMP, a second messenger coupled to A2 receptors in several cell types. Thus, plasma membrane expression of A2 receptors dramatically increases during monocyte differentiation in vitro. These data show that a potentially physiologic mediator can have very different effects on the function of monocytes and macrophages. This suggests a mechanism whereby phagocytic function at inflammatory sites can be down-regulated if and only if signals for the recruitment of new phagocytes have subsided.  相似文献   

15.
The current study aims to review flow cytometric (FCM) parameters for the quantification of phagocytosis. A limitation of existing methods is their difficulty with accurate quantification of the phagocytic index, i.e., number of beads per phagocyte, in individual cell lines in mixed cell suspensions. We have quantified phagocytosis and the oxidative burst simultaneously using fluorescent beads coated with meningococcal outer membrane vesicles (OMV beads) by the conversion of dihydrorhodamine 123 (DHR-123) to rhodamine 123 (R-123). Both these processes depend on specific serum opsonins. After the incubation, staining with a fluorescent anti-CD14 monoclonal antibody succeeded in discriminating phagocytosing monocytes from neutrophils. The spectral overlaps between OMV beads, R-123, and anti-CD14 could be completely compensated. Percentage of phagocytosis and the phagocytic index were similar in monocytes and neutrophils, but the oxidative burst behaved differently. Two monocyte subpopulations were observed. Both subpopulations spontaneously converted some DHR-123 into R-123, whereas the reaction was triggered by phagocytosis in neutrophils. The total oxidative response increased with increasing phagocytic index in both cell types, but the oxidative burst in monocytes was about twice that of neutrophils. The oxidative ratio (mean R-123 fluorescence value divided by the phagocytic index) declined with time in monocytes, but increased in neutrophils. Our results demonstrate the need for careful attention to technical details. This single-laser, three-color FCM method facilitates the comparative research of phagocytosis and the oxidative burst in monocytes and neutrophils and provides a basis for a number of applications in hematology, infectious medicine, and immunology.  相似文献   

16.
The PI3K/Akt signaling pathway has been recently suggested to have controversial functions in models of acute and chronic inflammation. Our group and others have reported previously that the complement split product C5a alters neutrophil innate immunity and cell signaling during the onset of sepsis and is involved in PI3K activation. We report in this study that in vivo inhibition of the PI3K pathway resulted in increased mortality in septic mice accompanied by strongly elevated serum levels of TNF-alpha, IL-6, MCP-1, and IL-10 during sepsis as well as decreased oxidative burst activity in blood phagocytes. PI3K inhibition in vitro resulted in significant increases in TLR-4-mediated generation of various proinflammatory cytokines in neutrophils, whereas the opposite effect was observed in PBMC. Oxidative burst and phagocytosis activity was significantly attenuated in both neutrophils and monocytes when PI3K activation was blocked. In addition, PI3K inhibition resulted in strongly elevated TLR-4-mediated generation of IL-1beta and IL-8 in neutrophils when these cells were co-stimulated with C5a. C5a-induced priming effects on neutrophil and monocyte oxidative burst activity as well as C5a-induced phagocytosis in neutrophils were strongly reduced when PI3K activation was blocked. Our data suggest that the PI3K/Akt signaling pathway controls various C5a-mediated effects on neutrophil and monocyte innate immunity and exerts an overall protective effect during experimental sepsis.  相似文献   

17.
Abstract Lipophosphoglycan (LPG), a surface glycoconjugate of Leishmania promastigotes, has been reported as playing an active role in protecting the parasite within phagolysosomes, by an impairment of monocyte oxidative responses. In this study the effect of LPG on the oxidative burst of human peripheral monocytes, eosinophils and neutrophils was evaluated. Our results demonstrated that either superoxide anion (O2) or hydrogen peroxide (H2O2) release by LPG-pretreated cells was diminished, emphasizing the ability of this glycoconjugate to impair the oxidative activity of all phagocytes.  相似文献   

18.
TGF-beta1 (TGF) has been implicated in the pathogenesis of several chronic infections and is thought to promote microbial persistence by interfering with macrophage function. In rats with experimental pulmonary cryptococcosis, increased lung levels of TGF were present at 12 mo of infection. Within the lung, expression of TGF localized to epithelioid cells and foamy macrophages in areas of inflammation. Increased TGF expression was also observed in the lungs of experimentally infected mice and a patient with pulmonary cryptococcosis. TGF reduced Ab and serum-mediated phagocytosis of Cryptococcus neoformans by rat alveolar macrophages (AM) and peripheral blood monocytes, and this was associated with decreased chemokine production and oxidative burst. Interestingly, TGF-treated rat AM limited both intracellular and extracellular growth of C. neoformans. Control of C. neoformans growth by TGF-treated rat AM was due to increased secretion of lysozyme, a protein with potent antifungal activity. The effects of TGF on the course of infection were dependent on the timing of TGF administration relative to the time of infection. TGF treatment of chronically infected rats resulted in reduced lung fungal burden, while treatment early in the course of infection resulted in increased fungal burden. In summary, our studies suggest a dual role for TGF in persistent fungal pneumonia whereby it contributes to the local control of infection by enhancing macrophage antifungal efficacy through increased lysozyme secretion, while limiting inflammation by inhibiting macrophage/monocyte phagocytosis and reducing associated chemokine production and oxidative burst.  相似文献   

19.
We examined the ability of human monocytes and culture-derived macrophages under serum-free conditions to phagocytose desialated sheep erythrocytes (E), an activator of the alternative pathway of human complement. Freshly derived monocytes ingested desialated erythrocytes, but the degree of phagocytosis varied among individual donors. However, exposing the phagocyte to intact plasma fibronectin (Fn) had no effect on monocyte phagocytosis. Macrophages derived from monocytes in culture were far more efficient at ingesting desialated E, and the extent of phagocytosis was proportional to the degree of desialation. Although exposure of macrophages to substrate-bound Fn or fluid-phase Fn enhanced the phagocytosis of desialated E, pretreatment of desialated E with Fn did not enhance phagocytosis, demonstrating that Fn acted through an interaction with the macrophages. Fn-enhanced phagocytosis of desialated E was inhibited by treating macrophages with a monoclonal antibody to the C4b/C3b receptor (CR1), but not with a monoclonal antibody to the receptor for C3bi (CR3). Addition of cobra venom factor (CVF) to the macrophages also inhibited Fn-enhanced phagocytosis of desialated E. Phagocytosis of IgG-sensitized E, either in the absence or in the presence of Fn, was not significantly affected by anti-CR1 or CVF, demonstrating that these reagents did not lead to a general inhibition of phagocytosis. These experiments suggest that macrophages may deposit enough C3b onto desialated E to cause CR1-mediated phagocytosis in the presence of Fn. The ability of macrophages to opsonize and ingest foreign particles that activate complement may be critically important in areas of inflammation where concentrations of serum-derived specific opsonins may be inadequate.  相似文献   

20.
The HIV envelope glycoprotein gp120 binds with high affinity to CD4 and is responsible for the tropism of HIV for CD4+ T cells and monocytes. Efforts to develop HIV vaccines have focused on gp120 and, therefore, a detailed molecular understanding of human immune responses to gp120 is essential. In this report, we have used human T cell clones specific for gp120 to examine the processing and presentation of gp120 to T cells. In particular, we examined the role of the CD4 that is expressed at low levels on the surfaces of human monocytes in the presentation of gp120 by monocytes. The presentation of gp120 to gp120-specific human T cell clones was blocked by pretreatment of monocytes with anti-CD4 mAb. Blocking of monocyte CD4 with anti-CD4 did not inhibit presentation of other Ag or of synthetic peptides representing epitopes within gp120 recognized by gp120-specific T cell clones. These results indicated that the anti-CD4-mediated inhibition occurred at the level of the monocyte, was specific for the gp120 response, and was operative at the initial Ag uptake phase of the Ag-processing pathway. Definitive confirmation that monocyte CD4 functions in the initial uptake step of the gp120-processing pathway was obtained by using soluble CD4 to block the interaction of gp120 with monocyte CD4. These results demonstrate that gp120 expressed by human monocytes plays an important role in the initial uptake of gp120 by monocytes and that gp120 taken up via CD4 is subsequently processed to allow for exposure of epitopes recognized by gp120-specific human T cells. At limiting gp120 concentrations, uptake via CD4 is essential for the presentation of gp120.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号