首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta(2) adrenergic receptor (beta(2)AR) is a G protein-coupled receptor that is selective to epinephrine. We demonstrate herein monitoring of an agonist-induced conformational change of beta(2)AR in living cells. The monitoring method is based on fluorescence resonance energy transfer from a cyan fluorescent protein (CFP) to a biarsenical fluorophore, FlAsH, attached to the C-terminus, and the third intracellular loop (ICL3), respectively. Recombinant beta(2)ARs exhibited agonist-induced increases in the FlAsH/CFP emission ratio, indicating that the ICL3 approached the C-terminus upon activation. Since the emission ratio changes were on a time scale of seconds, the conformational change of beta(2)AR in living cells was more rapid than that of purified beta(2)AR measured in vitro. Interestingly, the direction of the emission ratio change of beta(2)AR was opposite to that of the norepinephrine-responsive alpha(2A) adrenergic receptor reported recently. It was suggested that this discrepancy corresponds directly to the diametric biological functions, i.e., the activation or inactivation of adenylyl cyclase.  相似文献   

2.
A class of arylsulfonamide glucocorticoid receptor agonists that contains a substituted phenyl group as a steroid A-ring mimetic is reported. The structural design and SAR that provide the functional switching of a GR antagonist to an agonist is described. A combination of specific hydrogen bonding and lipophilic elements on the A-ring moiety is required to achieve potent GR agonist activity. This study culminated in the identification of compound 23 as a potent GR agonist with selectivity over the PR and MR nuclear hormone receptors.  相似文献   

3.
The glucocorticoid receptor (GR) forms part of a multiprotein complex consisting of chaperones and proteins active in glucocorticoid signaling and other pathways. By immunoaffinity purification of GR, followed by Edman sequencing and Western blotting, we identified the FMS-like tyrosine kinase 3 (Flt3) as a GR-interacting protein in rat liver and hepatoma cells. Flt3 interacts with both non-liganded and liganded GR. The DNA-binding domain of GR is sufficient for Flt3 interaction as shown by GST-pull down experiments. Studies of the effects of Flt3 and its ligand FL in glucocorticoid-driven reporter-gene assays in Cos7 cells, show that co-transfection with Flt3 and FL potentiates glucocorticoid effects. Treatment with FL had no effect on GR location and Dex induced translocation of GR was unaffected by FL. In summary, GR and Flt3 interact, affecting GR signaling. This novel cross-talk between GR and a hematopoietic growth factor might also imply glucocorticoid effects on Flt3-mediated signaling.  相似文献   

4.
Summary Protein-protein interactions are fundamental processes for many biological systems including those involving the superfamily of G-protein coupled receptors (GPCRs). When addressing key questions concerning the regulation of GPCR-protein complexes and their functional significance, the development and refinement of non-invasive techniques to study these interactions will be of great value. One such technique, bioluminescence resonance energy transfer (BRET), is a recently described biophysical method that represents a powerful tool with which to measure protein-protein interactions in live cells, in real time. This minireview highlights the impact that evolving techniques such as BRET have had on the study of dynamic protein interactions involving GPCRs. In particular, the application of BRET to the study of protein interactions involving the receptors for hypothalamic peptide hormones, thyrotropin-releasing hormone (TRH) and gonadotropin-releasing hormone (GnRH), will be discussed. Using these receptors, BRET has successfully been used to demonstrate formation of both agonist-dependent and independent GPCR-GPCR complexes (oligomerization) and the agonist-dependent interaction of GPCRs with their intracellular adaptor protein partners, the arrestins. In summary, BRET is a highly snnsitive method that will not only aid in advancing our understanding of GPCR signalling and trafficking bout coud also potentially lead to the development of novel therapeutics that target these GPCR-protein complexes.  相似文献   

5.
Protein-protein interactions are fundamental processes for manybiological systems including those involving the superfamily ofG-protein coupled receptors (GPCRs). When addressing keyquestions concerning the regulation of GPCR-protein complexes andtheir functional significance, the development and refinement ofnon-invasive techniques to study these interactions will be ofgreat value. One such technique, bioluminescence resonanceenergy transfer (BRET), is a recently described biophysicalmethod that represents a powerful tool with which to measureprotein-protein interactions in live cells, in real time. Thisminireview highlights the impact that evolving techniques such asBRET have had on the study of dynamic protein interactionsinvolving GPCRs. In particular, the application of BRET to thestudy of protein interactions involving the receptors forhypothalamic peptide hormones, thyrotropin-releasing hormone(TRH) and gonadotropin-releasing hormone (GnRH), will bediscussed. Using these receptors, BRET has successfully beenused to demonstrate formation of both agonist-dependent andindependent GPCR-GPCR complexes (oligomerization) and theagonist-dependent interaction of GPCRs with their intracellularadaptor protein partners, the arrestins. In summary, BRET is ahighly sensitive method that will not only aid in advancing ourunderstanding of GPCR signalling and trafficking but could alsopotentially lead to the development of novel therapeutics thattarget these GPCR-protein complexes.  相似文献   

6.
7.
8.
A class of α-methyltryptamine sulfonamide glucocorticoid receptor (GR) modulators was optimized for agonist activity. The design of ligands was aided by molecular modeling, and key function-regulating pharmacophoric points were identified that are critical in achieving the desired agonist effect in cell based assays. Compound 27 was profiled in vitro and in vivo in models of inflammation. Analogs could be rapidly prepared in a parallel approach from aziridine building blocks.  相似文献   

9.
The use of ultrahigh throughput screens (uHTS) is a well-accepted mechanism to identify agonists and antagonists of target receptors. We used the Path Hunter [Path Hunter technology is a registered trademark of DiscoveRx Corporation.] technology from DiscoveRx to screen the entire Merck compound library for glucocorticoid receptor (GR) agonists in a 2.2-μl total reaction volume assayed in a 3456-well plate format. This single addition, homogenous assay which utilizes the principle of enzyme fragment complementation (EFC) to detect nuclear translocation of GR, an initial step of receptor activation, was used to successfully screen a large library of small molecules as indicated by an average signal to background ratio of approximately 4-fold and an average Z-factor value of 0.45. Hits from the HTS campaign were studied in a cytokine secretion assay in primary human monocytes to gain functional information regarding these compounds in a phenotypic and physiologically relevant setting. Our data indicate that using the PathHunter assay, we successfully identified compounds that showed agonism for the GR receptor in primary human monocytes and due to their performance in a physiologically relevant model they likely will have a better chance to evoke clinical efficacy.  相似文献   

10.
11.
"Negative selection" and "death by neglect" are governed by apoptotic processes occurring in the thymus that shape the repertoire of maturing T cells. We have previously developed an in vitro model that recapitulates "death by neglect": Co-cultivation of double positive (DP) thymocytes or thymic lymphoma cells (PD1.6) with thymic epithelial cells (TEC) caused TcR-independent apoptosis of the former. We further demonstrated that this apoptosis could be attenuated by aminoglutethimide, an inhibitor of steroid synthesis, suggesting a role of TEC-derived glucocorticoids (GC) in this death process. We have now substantiated the role of the GC-glucocorticoid receptor (GR) axis by using a GC-resistant subline (PD1.6Dex(-)) obtained from the GC-sensitive PD1.6 cells by repeated exposures to increasing doses of dexamethasone (Dex). The PD1.6Dex(-) cells barely express GR and are much less sensitive to TEC-induced apoptosis. Re-expression of GR in PD1.6Dex(-) cells restored their sensitivity to both Dex and TEC, highlighting the central role of GR in these apoptotic processes. Likewise, repeated exposures of PD1.6 cells to TEC led to the selection of TEC-resistant cells (PD1.6TEC(-)) that are insensitive to corticosterone and less sensitive to Dex, though their GR level was only moderately reduced. This is in line with the low levels of corticosterone secreted by TEC. Altogether, our data show that TEC eliminates DP thymic lymphoma cells in a GR-dependent manner and modulates the GC sensitivity of the surviving cells.  相似文献   

12.
Necela BM  Cidlowski JA 《Steroids》2003,68(4):341-350
A flow cytometry-based reporter gene assay was developed and utilized to measure glucocorticoid receptor (GR)-mediated gene activation at the single cell level in living cells. A reporter gene was generated that contains two copies of the glucocorticoid response element and an E1b TATA box upstream of a destabilized enhanced green fluorescent protein. Glucocorticoid activation of the reporter gene in Cos-1 and HTC cell lines was measured in vivo by flow cytometry and was shown to be dose dependent, leading to an increase in total fluorescence of the cell population. Flow cytometric analysis indicated this increase in total fluorescence per sample resulted from an increase in the number of cells expressing the activated green fluorescent protein (GFP) reporter as well as an overall increase in the mean GFP fluorescence within cells. Activation of reporter gene activity was time dependent occurring as early as 1-2h after dexamethasone addition. Activation of the reporter gene was specific as it exhibited different sensitivities to a range of glucocorticoids and activation could be blocked with glucocorticoid receptor antagonists. Coexpression of the coactivator SRC-1a or P65 subunit of NF-kappa B with GR led to enhancement or repression, respectively. Taken together, these data suggest the reporter-based flow cytometry assay is an effective method for analyzing glucocorticoid receptor-mediated gene expression at the single cell level in living cells.  相似文献   

13.
It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα.  相似文献   

14.
15.
16.
17.
A variety of fluorescent proteins with different spectral properties have been created by mutating green fluorescent protein. When these proteins are split in two, neither fragment is fluorescent per se, nor can a fluorescent protein be reconstituted by co-expressing the complementary N- and C-terminal fragments. However, when these fragments are genetically fused to proteins that associate with each other in cellulo, the N- and C-terminal fragments of the fluorescent protein are brought together and can reconstitute a fluorescent protein. A similar protein complementation assay (PCA) can be performed with two complementary fragments of various luciferase isoforms. This makes these assays useful tools for detecting the association of two proteins in living cells. Bioluminescence resonance energy transfer (BRET) or fluorescence resonance energy transfer (FRET) occurs when energy from, respectively, a luminescent or fluorescent donor protein is non-radiatively transferred to a fluorescent acceptor protein. This transfer of energy can only occur if the proteins are within 100 Å of each other. Thus, BRET and FRET are also useful tools for detecting the association of two proteins in living cells. By combining different protein fragment complementation assays (PCA) with BRET or FRET it is possible to demonstrate that three or more proteins are simultaneous parts of the same protein complex in living cells. As an example of the utility of this approach, we show that as many as four different proteins are simultaneously associated as part of a G protein-coupled receptor signalling complex.  相似文献   

18.
During our research on apelin receptor (APJ) signalling in living cells with BRET and FRET, we demonstrated that apelin-13 stimulation can lead to the activation of Gαi2 or Gαi3 through undergoing a molecular rearrangement rather than dissociation in HEK293 cells expressing APJ. Furthermore, Gαo and Gαq also showed involvement in APJ activation through a classical dissociation model. However, both FRET signal and BRET ratio between fluorescent Gαi1 subunit and Gβγ subunits demonstrated little change after apelin-13 stimulation. These results demonstrated that stimulation of APJ with apelin-13 causes activation of Gαi2, Gαi3, Gαo, Gαq; among which Gαi2, Gαi3 were activated through a novel rearrangement process. These results provide helpful data for understanding APJ mediated G-protein signalling.  相似文献   

19.
The presence of glucocorticoid receptors (GR) in rat liver nuclei over a 24 h time period following hyperthermic stress at 41 degrees C was immunocytologically studied using unfixed nuclear smears. Liver nuclei in unstressed animals were found to be immunonegative for GR. However, intense GR immunopositivity followed by a subsequent gradual decrease in receptor levels was observed in the nuclei of test animals during the first 2 h after stress. This stress-related increase in the receptor nuclear level was greater than the increase seen after dexamethasone administration. These results suggest that hyperthermic stress could potentiate the hormonal stimulation of receptor nuclear translocation.  相似文献   

20.
The SH1 helix is a joint that links the converter subdomain to the rest of the myosin motor domain. Recently, we showed that a mutation within the SH1 helix in Dictyostelium myosin II (R689H) reduced the elasticity and thermal stability of the protein. To reveal the involvement of the SH1 helix in ATP-dependent conformational changes of the motor domain, we have investigated the effects of the R689H mutation on the conformational changes of the converter, using a GFP-based fluorescence resonance energy transfer method. Although the mutation does not seem to strongly affect conformations, we found that it significantly reduced the activation energy required for the ATP-induced conformational transition corresponding to the recovery stroke. Given the effects of the mutation on the mechanical properties of myosin, we propose that the SH1 helix plays an important role in the mechanochemical energy conversion underlying the conformational change of the myosin motor domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号