共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
头状链轮丝菌(Streptoverticillum caespitosus)ATCC27422染色体复制起始区(oriC)内共有22个DnaA盒结构;其中第21、22个DnaA盒彼此方向相反、相互重叠8个碱基。放线菌oriC数据库搜索发现,这种重叠DnaA盒在抗生素链霉菌、结核分枝杆菌等几种放线菌中也同样存在。在分枝杆菌中一般由第1、2个DnaA盒组成,而在链霉菌中由最后的两个DnaA盒(第21、22)组成。重叠DnaA盒保守序列为CTGTGCACAA,长度为10个碱基,即由于重叠的缘故比正常DnaA盒长1个碱基。通过测量载体对变铅青链霉菌的转化效率研究了oriC不同部位在染色体复制起始中的功能和地位。头状链轮丝菌oriC序列的5′端1~188位的片段虽然不包含有DnaA盒结构,但该片段的缺失,造成oriC复制起始功能的完全丧失。3′端793~939位片段同样没有DnaA盒结构,该片段的缺失,仅发生转化效率的降低约40%,说明oriC的793~939位序列对DNA复制起始效率以及复制子稳定性起重要作用。当oniC被克隆人载体时两端各带有一段dnaA、dnaN基因的部分序列,所构建的载体虽然转化效率较低,但转化子的菌落、菌丝形态与宿主菌原有的表型相接近,由此推断oriC两端的序列除了编码各自产物外,可能通过影响染色体DNA复制的起始效率、复制子稳定性等对染色体的复制起始发挥顺式调控作用。 相似文献
3.
The CMP-N-acetylneuraminic acid (CMP-NeuNAc) synthetase gene of Neisseria meningitidis group B is located on a 2.3-kb EcoRI fragment within the cps gene cluster. Nucleotide sequence determination of the gene encoding the CMP-NeuNAc synthetase revealed a 515-bp open reading frame that can encode a 18.9-kDA protein. A computer data base scan revealed a 59.4% identity to the CMP-NeuNAc synthetase gene of E. coli K1. Enzymatic activity was confirmed in vitro and in vivo. Transformation of the CMP-NeuNAc defective E. coli K1 strain EV5 with the meningococcal CMP-NeuNAc synthetase could complement the defect in E. coli. 相似文献
4.
Sequential Entry of Transforming Markers into Neisseria meningitidis After Chromosome Alignment
下载免费PDF全文

Kaare Jyssum 《Journal of bacteriology》1969,99(1):263-268
The kinetics of appearance of transformants as a function of time of exposure to deoxyribonucleic acid (DNA) was examined in Neisseria meningitidis. Incubation with chloramphenicol for as long as 2 hr, which probably leads to chromosome alignment, resulted in augmentation of the lag period before the appearance of the first transformants. The lag periods thus found were dependent upon the marker tested. This permitted the construction of a time map according to the lag periods observed for individual markers. This map was in general agreement with the chromosome map of the recipient strain as determined by marker frequency analysis. Transformation of recipient cells with chromosomes aligned by growth to the stationary phase showed the same type of increased lag in the appearance of transformants before the logarithmic phase of growth had again been reached. These results support the assumption that the nature of the marker accepted by a recipient cell corresponds to the marker present at the replication point of the chromosome. In the absence of DNA and protein synthesis, the uptake of one marker seems to be successively followed by other markers in a linear order determined by the chromosome of the recipient cell. 相似文献
5.
Relation of the Segregative Origin of Chromosome Replication to the Origin of Replication After Amino Acid Starvation
下载免费PDF全文

Cultures of Escherichia coli 15T(-) and K-12 were labeled with (3)H-thymine before, during, and after amino acid starvation. The number of labeled segregating units was measured by autoradiography of microcolonies derived from the labeled cells. In both strains, labels inserted before starvation and during starvation appeared to segregate as if incorporated into the same polynucleotide strands. However, labels inserted during and after starvation segregated as if incorporated into different polynucleotide strands. In view of previous data, it was concluded that replication after amino acid starvation originates from the region of the chromosome which serves as the origin for replication during normal growth and division. 相似文献
6.
7.
The current increase in the incidence and severity of infectious diseases mandates improved understanding of the basic biology and DNA repair profiles of virulent microbes. In our studies of the major pathogen and model organism Neisseria meningitidis, we constructed a panel of mutants inactivating genes involved in base excision repair, mismatch repair, nucleotide excision repair (NER), translesion synthesis, and recombinational repair pathways. The highest spontaneous mutation frequency among the N. meningitidis single mutants was found in the MutY-deficient strain as opposed to mutS mutants in Escherichia coli, indicating a role for meningococcal MutY in antibiotic resistance development. Recombinational repair was recognized as a major pathway counteracting methyl methanesulfonate-induced alkylation damage in the N. meningitidis. In contrast to what has been shown in other species, meningococcal NER did not contribute significantly to repair of alkylation-induced DNA damage, and meningococcal recombinational repair may thus be one of the main pathways for removal of abasic (apurinic/apyrimidinic) sites and strand breaks in DNA. Conversely, NER was identified as the main meningococcal defense pathway against UV-induced DNA damage. N. meningitidis RecA single mutants exhibited only a moderate decrease in survival after UV exposure as opposed to E. coli recA strains, which are extremely UV sensitive, possibly reflecting the lack of a meningococcal SOS response. In conclusion, distinct differences between N. meningitidis and established DNA repair characteristics in E. coli and other species were identified. 相似文献
8.
S Schork A Schlüter J Blom S Schneiker-Bekel A Pühler A Goesmann M Frosch C Schoen 《Journal of bacteriology》2012,194(18):5144-5145
Neisseria meningitidis is a commensal and accidental pathogen exclusively of humans. Although the production of polysaccharide capsules is considered to be essential for meningococcal virulence, there have been reports of constitutively unencapsulated strains causing invasive meningococcal disease (IMD). Here we report the genome sequence of a capsule null locus (cnl) strain of sequence type 198 (ST-198), which is found in half of the reported cases of IMD caused by cnl meningococcal strains. 相似文献
9.
Kremastinou J Tzanakaki G Levidiotou S Markou F Themeli E Voyiatzi A Psoma E Theodoridou M Blackwell CC 《FEMS immunology and medical microbiology》2003,39(1):23-29
In response to an increase in the number of cases of invasive meningococcal disease (IMD) in northern regions of Greece, a survey was carried out to determine if there was an increase in carriage of Neisseria meningitidis, particularly in areas where there have been increases in immigrant populations from neighbouring countries. The second objective was to determine if there was an increase in the serogroup C:2a:P1.5,2 a phenotype associated with recent outbreaks or changes in antibiotic sensitivities. As carriage of Neisseria lactamica is associated with development of natural immunity to IMD, the third objective was to determine the carriage rate of N. lactamica in this population. Among 3167 individuals tested, meningococci were isolated from 334 (10.5%). Compared with our previous studies, the proportion of meningococcal carriers was significantly increased among children in secondary education (11.3%) (chi2=9.67, P<0.005) and military recruits (37.4%) (chi2=21.11, P<0.000). Only 5/334 (1.5%) isolates expressed the phenotype associated with the increase in IMD in Greece. N. lactamica was isolated from 146/3167 (4.6%) participants. It was isolated from 71/987 (7.2%) children attending primary or nursery schools; however, the highest proportion of carriers (11.3%) was found in the boarding school for young Albanian men. In the 21-59-year age range, the majority of N. lactamica isolates (22/25, 88%) were from women, probably due to closer or more prolonged contact with children in the primary school age range. Smoking was significantly associated with isolation of meningococci from men but not from women. Penicillin-insensitive strains (25/334, 7.5%) were identified in all four regions examined; the majority (14/25, 56%) were obtained from military personnel. We conclude that there was a higher proportion of carriers in the population of northern Greece; however, the increase in carriage rate was not associated with the influx of immigrants from neighbouring countries, and there was not a higher incidence of the C:2a:P1.5,2 strain responsible for increased disease activity in Greece in either the immigrant or local populations. 相似文献
10.
Bash MC Lynn F Concepcion NF Tappero JW Carlone GM Frasch CE 《FEMS immunology and medical microbiology》2000,29(3):169-176
The porin proteins of Neisseria meningitidis are important components of outer membrane protein (OMP) vaccines. The class 3 porin gene, porB, of a novel serogroup B, serotype 4, 15 isolate from Chile (Ch501) was found to be VR1-4, VR2-15, VR3-15 and VR4-15 by porB variable region (VR) typing. Rabbit immunization studies using outer membrane vesicles revealed immunodominance of individual PorB (class 3) VR epitopes. The predominant anti-Ch501 PorB response was directed to the VR1 epitope. Anti-PorB VR1 mediated killing was suggested by the bactericidal activity of Ch501 anti-sera against a type 4 strain not expressing PorA or class 5 OMPs. Studies that examine the molecular epidemiology of individual porB VRs, and the immune responses to PorB epitopes, may contribute to the development of broadly protective group B meningococcal vaccines. 相似文献
11.
Neisseria meningitidis infection still remains a major life-threatening bacterial disease worldwide. The availability of bacterial genomic sequences generated a paradigm shift in microbiological and vaccines sciences, and post-genomics (comparative genomics, functional genomics, proteomics and a combination/evolution of these techniques) played important roles in elucidating bacterial biological complexity and pathogenic traits, at the same time accelerating the development of therapeutic drugs and vaccines. This article summarizes the most recent technological and scientific advances in meningococcal biology and pathogenesis aimed at the development and characterization of vaccines against the pathogenic meningococci. 相似文献
12.
Epidemiology and pathogenesis of Neisseria meningitidis 总被引:8,自引:0,他引:8
Neisseria meningitidis, an exclusive pathogen of humans, remains the leading worldwide cause of meningitis and fatal sepsis, usually in otherwise healthy individuals. In recent years, significant advances have improved our understanding of the epidemiology and genetic basis of meningococcal disease and led to progress in the development of the next generation of meningococcal vaccines. This review summarizes current knowledge of the human susceptibility to and the epidemiology and molecular pathogenesis of meningococcal disease. 相似文献
13.
14.
Mutator Factor in Neisseria meningitidis Associated with Increased Sensitivity to Ultraviolet Light and Defective Transformation
下载免费PDF全文

Kaare Jyssum 《Journal of bacteriology》1968,96(1):165-172
A variant of Neisseria meningitidis was found to carry a mutator factor which endowed the bacteria with generalized genetic instability. The reversion frequencies of several biochemical mutants were increased up to 1,000-fold when the factor was introduced. The factor is not unidirectional in preference, since the mutator induced mutants generally reverted with increased frequency in its presence. There could be found no indication of insufficient synthesis of nucleic acid precursors. Attempts to demonstrate an unusual, mutagenic base incorporated in deoxyribonucleic acid (DNA) were negative. Strains carrying the mutator factor had significantly increased sensitivity to ultraviolet light. A mutation to a more ultraviolet-resistant type coincided with a disappearance of the mutator property. The presence of the mutator factor in a competent strain resulted in a reduction of the transformation frequency to between 0.5 and 5% of that in the parental strain. A mutation to the more ultraviolet-resistant type resulted in simultaneous loss of the mutator property and reestablishment of a normal transformation efficiency. It has been suggested that this mutator factor may represent a defect in the DNA repair mechanism, which is also of importance for genetic recombination. The mutator factor showed cotransformation with the locus for streptomycin resistance, but a true linkage could not be proved. 相似文献
15.
16.
Vázquez JA de la Fuente L Berron S O'Rourke M Smith NH Zhou J Spratt BG 《Current biology : CB》1993,3(9):567-572
BACKGROUND: Classifying bacteria into species is problematic. Most microbiologists consider species to be groups of isolates that share some arbitrary degree of relatedness of biochemical or molecular (such as DNA sequence) features and that, ideally, are clearly delineated from all other groups of isolates. The main problem in applying to bacteria a biological concept of species based on the ability or inability of their genes to recombine, is that recombination appears to be rare in bacteria in nature, as indicated by the strong linkage disequilibrium between alleles found in most bacterial populations. However, there are some naturally transformable bacteria in which assortative recombination appears to be so frequent that alleles are in, or close to, linkage equilibrium. For these recombining populations a biological concept of species might be applicable. RESULTS: Populations of Neisseria gonorrhoeae and Neisseria meningitidis from Spain were analysed by multilocus enzyme electrophoresis. The data indicate that assortative recombination occurs frequently within populations, but not between populations. Similarly, the sequences of two house-keeping genes show no evidence of intragenic recombination between N. gonorrhoeae and N. meningitidis. CONCLUSIONS: N. gonorrhoeae and N. meningitidis represent extremely closely related 'sexual' populations that appear to be genetically isolated in nature, and thus conform to the biological concept of species. The extreme uniformity of N. gonorrhoeae house-keeping genes suggests that this species may have arisen recently as a clone of N. meningitidis that could colonize the genital tract. Ecological isolation - of populations that can colonize the genital tract from those that can colonize the nasopharynx - may have been an important component in speciation, leading to a lower frequency of recombination between species than within species. 相似文献
17.
No?lle Mistretta Delphine Seguin Jer?me Thiébaud Sandrine Vialle Frédéric Blanc Marina Brossaud Philippe Talaga Gunnstein Norheim Monique Moreau Bachra Rokbi 《The Journal of biological chemistry》2010,285(26):19874-19883
The lipooligosaccharide (LOS) of immunotype L11 is unique within serogroup A meningococci. In order to resolve its molecular structure, we conducted LOS genotyping by PCR analysis of genes responsible for α-chain sugar addition (lgtA, -B, -C, -E, -H, and -F) and inner core substituents (lgtG, lpt-3, and lpt-6). For this study, we selected seven strains belonging to subgroup III, a major clonal complex responsible for meningococcal meningitis epidemics in Africa. In addition, we sequenced the homopolymeric tract regions of three phase-variable genes (lgtA, lgtG, and lot-3) to predict gene functionality. The fine structure of the L11 LOS of each strain was determined using composition and glycosyl linkage analyses, NMR, and mass spectrometry. The masses of the dephosphorylated oligosaccharides were consistent with an oligosaccharide composed of two hexoses, one N-acetyl-hexosamine, two heptoses, and one KDO, as proposed previously. The molar composition of LOS showed two glucose residues to be present, in agreement with lgtH sequence prediction. Despite phosphoethanolaminetransferase genes lpt-3 and lpt-6 being present in all seven Neisseria meningitidis strains, phosphoethanolamine (PEtn) was found at both O-3 and O-6 of HepII among the three ST-5 strains, whereas among the four ST-7 strains, only one PEtn was found and located at O-3 of the HepII. The L11 LOS was found to be O-acetylated, as was indicated by the presence of the lot-3 gene being in-frame in all of the seven N. meningitidis strains. To our knowledge, these studies represent the first full genetic and structural characterization of the L11 LOS of N. meningitidis. These investigations also suggest the presence of further regulatory mechanisms affecting LOS structure microheterogeneity in N. meningitidis related to PEtn decoration of the inner core. 相似文献
18.
19.
Declan T. Bradley Thomas W. Bourke Derek J. Fairley Raymond Borrow Michael D. Shields Peter F. Zipfel Anne E. Hughes 《PloS one》2015,10(3)
Background
Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH) is associated with altered risk of invasive meningococcal disease (IMD). We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP) affected the risk association.Methods
We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student’s T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.Results
Rs12085435 A in C8B was associated with odds ratio (OR) of IMD (0.35 [95% CI 0.19–0.67]; P = 0.03 after correction). A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42–0.76], P = 1.6x10−4). There was no bacterial load (CtrA cycle threshold) difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025).Discussion
The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become important. 相似文献20.
The iron response in a number of bacterial systems is mediated by fur (f erric u ptake r egulation)-like regulatory systems. We have cloned and characterized a gene from Neisseria meningitidis that was homologous to Escherichia coli fur. This clone was capable of modulating expression from both E. coli and neisserial iron-regulated promoters in response to iron, and it produced a protein that reacted with anti-E. coli fur serum. Although the DNA and predicted amino acid sequences were very similar to those of four other published fur homologues, meningococcal fur was the most divergent of the group. Inability to construct a meningococcal fur mutant suggested that fur may be essential in this species. 相似文献