首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, we describe insights into the function of the ribosome tunnel that were obtained through an analysis of an unusual 25 residue N‐terminal motif (EspP1‐25) associated with the signal peptide of the Escherichia coli EspP protein. It was previously shown that EspP1‐25 inhibits signal peptide recognition by the signal recognition particle, and we now show that fusion of EspP1‐25 to a cytoplasmic protein causes it to aggregate. We obtained two lines of evidence that both of these effects are attributable to the conformation of EspP1‐25 inside the ribosome tunnel. First, we found that mutations in EspP1‐25 that abolished its effects on protein targeting and protein folding altered the cross‐linking of short nascent chains to ribosomal components. Second, we found that a mutation in L22 that distorts the tunnel mimicked the effects of the EspP1‐25 mutations on protein biogenesis. Our results provide evidence that the conformation of a polypeptide inside the ribosome tunnel can influence protein folding under physiological conditions and suggest that ribosomal mutations might increase the solubility of at least some aggregation‐prone proteins produced in E. coli.  相似文献   

2.
Ribosome-associated protein biogenesis factors (RPBs) act during a short but critical period of protein biogenesis. The action of RPBs starts as soon as a nascent polypeptide becomes accessible from the outside of the ribosome and ends upon termination of translation. In yeast, RPBs include the chaperones Ssb1/2 and ribosome-associated complex, signal recognition particle, nascent polypeptide-associated complex (NAC), the aminopeptidases Map1 and Map2, and the Nalpha-terminal acetyltransferase NatA. Here, we provide the first comprehensive analysis of RPB binding at the yeast ribosomal tunnel exit as a function of translational status and polypeptide sequence. We measured the ratios of RPBs to ribosomes in yeast cells and determined RPB occupation of translating and non-translating ribosomes. The combined results imply a requirement for dynamic and coordinated interactions at the tunnel exit. Exclusively, NAC was associated with the majority of ribosomes regardless of their translational status. All other RPBs occupied only ribosomal subpopulations, binding with increased apparent affinity to randomly translating ribosomes as compared with non-translating ones. Analysis of RPB interaction with homogenous ribosome populations engaged in the translation of specific nascent polypeptides revealed that the affinities of Ssb1/2, NAC, and, as expected, signal recognition particle, were influenced by the amino acid sequence of the nascent polypeptide. Complementary cross-linking data suggest that not only affinity of RPBs to the ribosome but also positioning can be influenced in a nascent polypeptide-dependent manner.  相似文献   

3.
The geometry of the polypeptide exit tunnel has been determined using the crystal structure of the large ribosomal subunit from Haloarcula marismortui. The tunnel is a component of a much larger, interconnected system of channels accessible to solvent that permeates the subunit and is connected to the exterior at many points. Since water and other small molecules can diffuse into and out of the tunnel along many different trajectories, the large subunit cannot be part of the seal that keeps ions from passing through the ribosome-translocon complex. The structure referred to as the tunnel is the only passage in the solvent channel system that is both large enough to accommodate nascent peptides, and that traverses the particle. For objects of that size, it is effectively an unbranched tube connecting the peptidyl transferase center of the large subunit and the site where nascent peptides emerge. At no point is the tunnel big enough to accommodate folded polypeptides larger than alpha-helices.  相似文献   

4.
During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.  相似文献   

5.
同义密码子使用模式作为核苷酸与氨基酸的纽带,其多样性介导了核糖体扫描速率,同时扩充了基因的遗传信息存储量。随着新型技术的应用,发现特异性密码子和密码子结合力可调节核糖体扫描速率并影响蛋白质构象。同义密码子使用模式通过多种方式在不同环节影响着核糖体扫描速率,同时还影响着自身mRNA的稳定性。本文简述了密码子使用模式如何在核糖体扫描翻译mRNA的过程中实现对多肽链翻译延伸的调控,为今后生物工程学领域如何优化蛋白高效表达提供可参考的思路与理念。  相似文献   

6.
Nakatogawa H  Ito K 《Cell》2002,108(5):629-636
Translation of SecM stalls unless its N-terminal part is "pulled" by the protein export machinery. Here we show that the sequence motif FXXXXWIXXXXGIRAGP that includes a specific arrest point (Pro) causes elongation arrest within the ribosome. Mutations that bypass the elongation arrest were isolated in 23S rRNA and L22 r protein. Such suppressor mutations occurred at a few specific residues of these components, which all face the narrowest constriction of the ribosomal exit tunnel. Thus, we suggest that this region of the exit tunnel interacts with nascent translation products and functions as a discriminating gate.  相似文献   

7.
1. Crude extracts of Escherichia coli programmed in protein synthesis by endogenous mRNA have incorporated amino acids into protein. Analysis of such extracts by sucrose-gradient centrifugation in low Mg(2+) concentration has revealed that 30S ribosomal subunits carry associated radioactive material of which a considerable proportion can be removed from ribosomes by treatment of pre-labelled extracts with puromycin. 2. Gradient analyses of incorporations carried out in the additional presence of added (32)P-labelled tRNA have indicated that tRNA sediments in the regions of the newly synthesized nascent protein and that both labels are associated with all ribosomal components detected on the gradients under the experimental conditions employed. 3. 30S ribosomal subunits carrying both (32)P and (14)C labels have been isolated, disrupted with sodium dodecyl sulphate, and analysed by chromatography on Sephadex G-200 columns. Both labels elute closely together and well away from a tRNA marker analysed under identical conditions. 4. It is proposed that 30S ribosomal subunits, isolated from extracts which have synthesized nascent peptides under the direction of endogenous mRNA, carry associated peptidyl-tRNA.  相似文献   

8.
Polylysine chains were synthesized on Bacillus stearothermophilus ribosomes in a poly(A)-programmed in vitro system. After separation of the ribosomal subunits by sucrose gradient centrifugation, the polylysine chains (in contrast to the polyphenylalanine chains synthesized in a poly(U) system) reproducibly remained attached to the large ribosomal subunit. It was possible to produce two-dimensional crystalline sheets from the large ribosomal subunits containing the polylysine chains. These sheets are an essential prerequisite for three-dimensional reconstruction studies aiming to show that the tunnel in the large ribosomal subunit provides a path for the nascent polypeptide chain.  相似文献   

9.
10.
Recognition of nascent polypeptides for targeting and folding   总被引:9,自引:0,他引:9  
A major difference between the refolding of proteins in vitro and the in vivo folding process, in which we include localization and assembly, is the need for additional factors in vivo, apart from the protein product itself. Thus, the amino acid sequence of a naturally selected protein contains not only the information specifying its three-dimensional structure, but also the information that enables these factors to recognize the nascent polypeptide. In this review, we consider how this latter information may be encoded and, in turn, interpreted by binding species.  相似文献   

11.
Ribosome stalling at tandem CGA codons or poly(A) sequences activates quality controls for nascent polypeptides including ribosome-associated quality control (RQC) and no-go mRNA decay (NGD). In RQC pathway, Hel2-dependent uS10 ubiquitination and the RQC-trigger (RQT) complex are essential for subunit dissociation, and Ltn1-dependent ubiquitination of peptidyl-tRNA in the 60S subunit requires Rqc2. Here, we report that polytryptophan sequences induce Rqc2-independent RQC. More than 11 consecutive tryptophan residues induced RQC in a manner dependent on Hel2-mediated ribosome ubiquitination and the RQT complex. Polytryptophan sequence-mediated RQC was not coupled with CAT-tailing, and Rqc2 was not required for Ltn1-dependent degradation of the arrest products. Eight consecutive tryptophan residues located at the region proximal to the peptidyl transferase center in the ribosome tunnel inhibited CAT-tailing by tandem CGA codons. Polytryptophan sequences also induced Hel2-mediated canonical RQC-coupled NGD and RQC-uncoupled NGD outside the stalled ribosomes. We propose that poly-tryptophan sequences induce Rqc2-independent RQC, suggesting that CAT-tailing in the 60S subunit could be modulated by the polypeptide in the ribosome exit tunnel.  相似文献   

12.
13.
The first events in the lives of proteins are the most hazardous. Starting at the ribosome, nascent polypeptides undergo complex folding processes endangered by aggregation reactions. Proteins with organellar destinations require correct targeting to the translocation machineries and prevention from premature folding. The high precision and speed of these processes is ensured by a cystosolic system consisting of molecular chaperones, folding catalysts and targeting factors. This review focuses on the interactions of this system with nascent polypeptides and discusses new concepts for protein folding in the cytosol. It is proposed that folding and targeting are promoted by a flexible network of multiple unassisted and assisted pathways.  相似文献   

14.
Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream open reading frame 2 (uORF2). The C terminus of the AAP appears to be compacted adjacent to the peptidyl transferase center (PTC). Both nascent chains interact with ribosomal proteins L4 and L17 at tunnel constriction in a distinct fashion. Significant changes at the PTC were observed: the eukaryotic-specific loop of ribosomal protein L10e establishes direct contact with the CCA end of the peptidyl-tRNA (P-tRNA), which may be critical for silencing of the PTC during translational stalling. Our findings provide direct structural?insight into two distinct eukaryotic stalling processes.  相似文献   

15.
16.
K Nagano  H Takagi  M Harel 《Biochimie》1991,73(7-8):947-960
Lim and Spirin [25] proposed a preferable conformation of the nascent peptide during the ribosomal transpeptidation. Spirin and Lim [26] excluded the possibilities of the side-by-side model proposed by Johnson et al [13] and the three-tRNA binding model (A, P and E sites) of Rheinberger and Nierhaus [3]. However, a slight conformational change at the 3' end regions of both A and P site tRNA molecules can enable the three different tRNA binding models to converge. With a modification of the angles of the ribose rings of both anticodon and mRNA this model can also be related to the model of Sundaralingam et al [19]. In this model of E coli rRNA the 3' end sequence ACCA76 or GCCA76 of P site tRNA is base-paired to UGGU810 of 23S rRNA, while the ACC75 or GCC75 of A site tRNA are base-paired to GGU1621 23S rRNA. The conformation of the A76 of A site tRNA is necessarily different from that of P site tRNA, at least during the course of the transpeptidation. The A76 of A site tRNA overlaps the binding region of puromycin. The C1400 of 16S rRNA in this model is located at a distance of 4 A from the 5' end of the anticodon of P site tRNA [14] and 17 A from the 5' end of the anticodon of A site tRNA [15]. It is also shown that a considerable but reasonable modification in the conformation of the anticodon loops could lead to accommodation of three deacylated tRNA(Phe) molecules at a time on 70S ribosome in the presence of poly(U) as observed experimentally [6]. A sterochemical explanation for the negatively-linked allosteric interactions between the A and E sites is also shown in the present model.  相似文献   

17.
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.  相似文献   

18.
The nascent chain-associated complex (NAC) is a dimeric protein complex of archaea and eukarya that interacts with ribosomes and translating polypeptide chains. We show that, in yeast, NAC and the signal-recognition particle (SRP) share the universally conserved ribosomal protein L25 as a docking site, which is in close proximity to the ribosomal exit tunnel. The amino-terminal segment of beta-NAC was found to be required for L25 binding. Purified NAC can prevent protein aggregation in vitro and thus shows certain properties of a molecular chaperone. Interestingly, the alpha-subunit of NAC interacts with the 54 kDa subunit of SRP. Consistent with a regulatory role of NAC in protein translocation into the endoplasmic reticulum (ER), we find that deletion of NAC results in an induction of the ER stress-response pathway. These results identify L25 as a conserved interaction platform for specific cytosolic factors that guide nascent polypeptides to their proper cellular destination.  相似文献   

19.
20.
When the export of E. coli SecM is blocked, a 17 amino acid motif near the C terminus of the protein induces a translation arrest from within the ribosome tunnel. Here we used a recently described application of fluorescence resonance energy transfer (FRET) to gain insight into the mechanism of translation arrest. We found that the SecM C terminus adopted a compact conformation upon synthesis of the arrest motif. This conformational change did not occur spontaneously, but rather was induced by the ribosome. Translation arrest required both compaction of the SecM C terminus and the presence of key residues in the arrest motif. Further analysis showed that the arrested peptidyl-tRNA was resistant to puromycin treatment and revealed additional changes in the ribosome-nascent SecM complex. Based on these observations, we propose that translation arrest results from a series of reciprocal interactions between the ribosome and the C terminus of the nascent SecM polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号