首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Two members of the KOX gene family, ZNF23 (KOX16) and ZNF32 (KOX30), have been mapped by in situ hybridization to chromosome regions 16q22 and 10q23-q24, respectively. The map location of ZNF23 and ZNF32 placed these zinc finger protein genes near to chromosome loci that, under certain in vitro conditions, are expressed as fragile sites (FRA16B, FRA16C) and (FRA10D, FRA10A, FRA10B and FRA10E). Human zinc finger gene ZNF32 maps to a chromosome region on 10q23-24 in which deletions have been observed associated with malignant lymphoma on 10q22-23 and with carcinoma of the prostate on 10q24. ZNF23 is located on 16q22 in a chromosomal region that has been involved in chromosome alterations characteristic of acute myeloid leukemia. A second Kox zinc finger gene (ZNF19/KOX12) was recently mapped to the same chromosome region on human chromosome 16q22. In the analogous murine position, the murine zinc finger genes Zfp-1 and Zfp-4 are found in the syntenic 16q region of mouse chromosome 8. Thus, ZNF19 and ZNF23 might be members of an evolutionarily conserved zinc finger gene cluster located on human chromosome 16q22.  相似文献   

3.
Nine KOX zinc finger genes were localized on four human chromosomes by in situ hybridization of cDNA probes to metaphase chromosomes. KOX1 (ZNF10), KOX11 (ZNF18), and KOX12 (ZNF19) were mapped to chromosome bands 12q24.33, 17p13-p12, and 16q22-q23, respectively. Six other KOX genes were localized on chromosome 19: KOX6 (ZNF14) and KOX13 (ZNF20) to 19p13.3-p13.2, KOX5 (ZNF13) and KOX22 (ZNF27) to 19q13.2-qter, and KOX24 (ZNF28) and KOX28 (ZNF30) to 19q13.4. Pulsed field gel electrophoresis experiments showed that the pairs of KOX genes found on the chromosome bands 12q24.33, 16q22-q23, 19p13.3-p13.2, or 19q13.3-qter lie within 200–300 kb DNA fragments. This suggests the existence of KOX gene clusters on these chromosomal bands.  相似文献   

4.
Three members of the human zinc finger Krüppel family, ZNF11/KOX2, ZNF22/KOX15, and ZNF25/KOX19, have been regionally localized to the pericentromeric region of chromosome 10 by in situ chromosomal hybridization and somatic cell hybrid analysis. ZNF25/KOX19 is located centromeric to a breakpoint in chromosome band 10q11.2 in the chromosome region 10p11.2-q11.2, whereas ZNF22/KOX15 maps distal to it in band 10q11.2. Sequences hybridizing to the KOX2 probe are found at two loci, ZNF11A and ZNF11B, that map proximal and distal to the 10q11.2 breakpoint, respectively. The two ZNF11 loci probably represent two related sequences in 10p11.2-q11.2. This cluster of ZNF/KOX genes is of particular interest since the loci for multiple endocrine neoplasia type 2A and 2B (MEN2A and MEN2B) syndromes have been assigned to this region by linkage analysis.  相似文献   

5.
We set out to define the holoprosencephaly (HPE) critical region on chromosome 21 and also to determine whether there were human homologues of the Drosophila single-minded (sim) gene that might be involved in HPE. Analysis of somatic cell hybrid clones that contained rearranged chromosomes 21 from HPE patients defined the HPE minimal critical region in 21q22.3 as D21S113 to qter. We used established somatic cell hybrid mapping panels to map SIM2 to chromosome 21 within subbands q22.2-q22.3. Analysis of the HPE patient–derived somatic cell hybrids showed that SIM2 is not deleted in two of three patients and thus is not a likely candidate for HPE1, the HPE gene on chromosome 21. However, SIM2 does map within the Down syndrome critical region and thus is a candidate gene that might contribute to the Down syndrome phenotype.  相似文献   

6.
We have developed an integrated map for a 35-cM area of human chromosome 8 surrounding the Langer-Giedion syndrome deletion region. This map spans from approximately 8q22 to 8q24 and includes 10 hybrid cell intervals, 89 polymorphic STSs, 118 ESTs, and 37 known genes or inferred gene homologies. The map locations of 25 genes including osteoprotegerin, syndecan-2, and autotaxin have been refined from the general locations previously reported. In addition, the map has been used to indicate the location of nine deletions in patients with Langer-Giedion syndrome and trichorhinophalangeal syndrome type I to demonstrate the potential usefulness of the map in the analysis of these complex syndromes. The map will also be of interest to anyone trying to clone positionally disease genes in this region, such as Cohen syndrome (8q22-q23), Klip-Feil syndrome (8q22.2), hereditary spastic paraplegia (8q24), and benign adult familial myoclonic epilepsy (8q23.3-q24.1).  相似文献   

7.
We analyzed nine multigenerational families with ascertained affective spectrum disorders in northern Sweden's geographically isolated population of Vasterbotten. This northern Swedish population, which originated from a limited number of early settlers approximately 8,000 years ago, is genetically more homogeneous than outbred populations. In a genomewide linkage analysis, we identified three chromosomal loci with multipoint LOD scores (MPLOD) >/=2 at 9q31.1-q34.1 (MPLOD 3.24), 6q22.2-q24.2 (MPLOD 2.48), and 2q33-q36 (MPLOD 2.26) under a recessive affected-only model. Follow-up genotyping with application of a 2-cM density simple-tandem-repeat (STR) map confirmed linkage at 9q31.1-q34.1 (MPLOD 3.22), 6q23-q24 (MPLOD 3.25), and 2q33-q36 (MPLOD 2.2). In an initial analysis aimed at identification of the underlying susceptibility genes, we focused our attention on the 9q locus. We fine mapped this region at a 200-kb STR density, with the result of an MPLOD of 3.70. Genealogical studies showed that three families linked to chromosome 9q descended from common founder couples approximately 10 generations ago. In this approximately 10-generation pedigree, a common ancestral haplotype was inherited by the patients, which reduced the 9q candidate region to 1.6 Mb. Further, the shared haplotype was observed in 4.2% of patients with bipolar disorder with alternating episodes of depression and mania, but it was not observed in control individuals in a patient-control sample from the Vasterbotten isolate. These results suggest a susceptibility locus on 9q31-q33 for affective disorder in this common ancestral region.  相似文献   

8.
Polymorphic tetranucleotide microsatellites D3S1512, D3S1744, D3S1550, and D3S232 were used to study the association of chromosome region 3q21-q25 neighboring the angiotensin II receptor type 1 gene (AT2R1) with diabetic nephropathy (DN) in diabetes mellitus type 1 (DM1). Allele and genotype frequencies were compared for DM1 patients with (N = 39) or without (N = 62) DN. Fisher's exact test with Bonferroni's correction revealed significant differences in frequencies of two D3S2326 alleles, one D3S1512 allele, and one allele and one genotype of D3S1550. No significant difference was observed with D3S1744. Thus, region 3q21-q25 proved tightly associated with DN in ethnic Russians with DM1 from Moscow.  相似文献   

9.
We have detected a polymorphism in the 3' untranslated region of the AML1 gene, which is located at the breakpoint on chromosome 21 in the t(8;21)(q22;q22.3) translocation often associated with patients with acute myeloid leukemia. Informative CEPH families were genotyped for this polymorphism and used to localize the gene on the linkage map of human chromosome 21. The AML1 gene is located between the markers D21S216 and D21S211, in chromosomal band 21q22.3.  相似文献   

10.
The report of a putative schizophrenia susceptibility gene linked to markers in the chromosome 5q11-q13 region and subsequent failures of replication have provoked considerable controversy. We here report six Welsh families multiply affected with schizophrenia in which there is no evidence for linkage between a dominant-like schizophrenia gene and 5q11-q13 markers. It is argued that our new results together with a combined reanalysis of previous studies suggest that a schizophrenia susceptibility gene can be excluded from the 5q11-q13 region. The apparent disparities between published results are most likely to reflect a chance finding in the one positive study and probably should not be interpreted as resulting from true linkage heterogeneity.  相似文献   

11.
12.
Kappen C  Salbaum JM 《Genomics》2001,73(2):171-178
Three genes that encode related immunoglobulin superfamily molecules have recently been mapped to human chromosome 15 in the region q22.3-q23 and to the syntenic region on mouse chromosome 9. These genes presumably derived from gene duplications, and they are highly similar to Deleted in Colorectal Cancer (DCC), which functions as an axon guidance molecule during development of the nervous system. To find out whether additional genes of this class were present in a chromosomal cluster, we produced a comparative physical map within the region of synteny between mouse chromosome 9 and human chromosome 15. This interval overlaps the critical region for the fourth genetic locus for Bardet-Biedl syndrome (BBS4) in humans. Bardet-Biedl syndrome (OMIM 600374) is characterized by poly/syn/brachydactyly, retinal degeneration, hypogonadism, mental retardation, obesity, diabetes, and kidney abnormalities. A detailed map of this locus will help to identify candidate genes for this disorder.  相似文献   

13.
We have applied a targeted physical mapping approach, based on the isolation of bovine region-specific large-insert clones using homologous human sequences and chromosome microdissection, to enhance the physical gene map of the telomeric region of BTA18 and to prove its evolutionary conservation. The latter is a prerequisite to exploit the dense human gene map for future positional cloning approaches. Partial sequencing and homology search were used to characterize 20 BACs targeted to the BTA18q2.4-q2.6 region. We used fluorescence in situ hybridization (FISH) to create physical maps of 11 BACs containing 15 gene loci; these BACs served as anchor loci. Using these approaches, 12 new gene loci (CKM, STK13, PSCD2, IRF3, VASP, ACTN4, ITPKC, CYP2B6, FOSB, DMPK, MIA, SIX5) were assigned on BTA18 in the bovine cytogenetic map. A resolved physical map of BTA18q2.4-q2.6 was developed, which encompasses 28 marker loci and a comparative cytogenetic map that contains 15 genes. The mapping results demonstrate the high evolutionary conservation between the telomeric region of BTA18q and HSA19q.  相似文献   

14.
Insulin resistance and hyperinsulinemia are strong correlates of obesity and type 2 diabetes, but little is known about their genetic determinants. Using data on nondiabetics from Mexican American families and a multipoint linkage approach, we scanned the genome and identified a major locus near marker D6S403 for fasting "true" insulin levels (LOD score 4.1, empirical P<.0001), which do not crossreact with insulin precursors. Insulin resistance, as assessed by the homeostasis model using fasting glucose and specific insulin (FSI) values, was also strongly linked (LOD score 3.5, empirical P<.0001) with this region. Two other regions across the genome were found to be suggestively linked to FSI: a location on chromosome 2q, near marker D2S141, and another location on chromosome 6q, near marker D6S264. Since several insulin-resistance syndrome (IRS)-related phenotypes were mapped independently to the regions on chromosome 6q, we conducted bivariate multipoint linkage analyses to map the correlated IRS phenotypes. These analyses implicated the same chromosomal region near marker D6S403 (6q22-q23) as harboring a major gene with strong pleiotropic effects on obesity and on lipid measures, including leptin concentrations (e.g., LOD(eq) for traits-specific insulin and leptin was 4.7). A positional candidate gene for insulin resistance in this chromosomal region is the plasma cell-membrane glycoprotein PC-1 (6q22-q23). The genetic location on chromosome 6q, near marker D6S264 (6q25.2-q26), was also identified by the bivariate analysis as exerting significant pleiotropic influences on IRS-related phenotypes (e.g., LOD(eq) for traits-specific insulin and leptin was 4.1). This chromosomal region harbors positional candidate genes, such as the insulin-like growth factor 2 receptor (IGF2R, 6q26) and acetyl-CoA acetyltransferase 2 (ACAT2, 6q25.3-q26). In sum, we found substantial evidence for susceptibility loci on chromosome 6q that influence insulin concentrations and other IRS-related phenotypes in Mexican Americans.  相似文献   

15.
A large number of significant QTL for economically important traits including average daily gain have been located on SSC1q, which, as shown by chromosome painting, corresponds to four human chromosomes (HSA9, 14, 15 and 18). To provide a comprehensive comparative map for efficient selection of candidate genes, 81 and 34 genes localized on HSA9 and HSA14 respectively were mapped to SSC1q using a porcine 7000-rad radiation hybrid panel (IMpRH). This study, together with the cytogenetic map (http://www2.toulouse.inra.fr/lgc/pig/cyto/genmar/htm/1GM.HTM), demonstrates that SSC1q2.1-q2.13 corresponds to the region ranging from 44.6 to 63.2 Mb on HSA14q21.1-q23.1, the region from 86.5 to 86.8 Mb on HSA15q24-q25, the region from 0.9 to 27.2 Mb on HSA9p24.3-p21, the region from 35.1 to 38.0 Mb on HSA9p13, the region from 70.3 to 79.3 Mb on HSA9q13-q21 and the region from 96.4 to 140.0 Mb on HSA9q22.3-q34. The conserved synteny between HSA9 and SSC1q is interrupted by at least six sites, and the synteny between HSA14 and SSC1q is interrupted by at least one site.  相似文献   

16.
17.
Intellectual disability (ID) is a common disease. While the etiology remains incompletely understood, genetic defects are a major contributor, which include mutations in genes encoding zinc finger proteins. These proteins modulate gene expression via binding to DNA. Consistent with this knowledge, we report here the identification of mutations in the ZNF407 gene in ID/autistic patients. In our study of an ID patient with autism, a reciprocal translocation 46,XY,t(3;18)(p13;q22.3) was detected. By using FISH and long-range PCR approaches, we have precisely mapped the breakpoints associated with this translocation in a gene-free region in chromosome 3 and in the third intron of the ZNF407 gene in chromosome18. The latter reduces ZNF407 expression. Consistent with this observation, in our subsequent investigation of 105 ID/autism patients with similar clinical presentations, two missense mutations Y460C and P1195A were identified. These mutations cause non-conservative amino acid substitutions in the linker regions between individual finger structures. In line with the linker regions being critical for the integrity of zinc finger motifs, both mutations may result in loss of ZNF407 function. Taken together, we demonstrate that mutations in the ZNF407 gene contribute to the pathogenesis of a group of ID patients with autism.  相似文献   

18.
N C Popescu  C R King  M H Kraus 《Genomics》1989,4(3):362-366
Through the use of a cDNA probe, the human erbB-2 gene was localized by in situ hybridization of normal human chromosomes at 17q11-q21. In situ hybridization of chromosomes derived from fibroblasts carrying a constitutional 15;17t(q22.3;q11.21) translocation showed that the erbB-2 gene was relocated on the rearranged chromosome 15. These results as well as grain localization on prophase chromosomes locate the erbB-2 gene at 17q12-q21.32. This localization may facilitate the search for human malignancies with chromosome changes involving the erbB-2 gene.  相似文献   

19.
The multisystem autosomal recessive disease ataxia-telangiectasia (A-T) is determined by several genes, as evidenced by the existence of four complementation groups in this disorder. Using linkage analysis, the ATA (A-T complementation group A) gene was previously localized to chromosome 11, region q22-q23. Analysis of the segregation of RFLP markers from this region in a Jewish-Moroccan family assigned to group C indicates that the ATC (A-T complementation group C) gene localizes to chromosome 11q22-q23 as well.  相似文献   

20.
Several recent genetic studies have suggested linkage of Type 2 diabetes (non-insulin-dependent diabetes mellitus) susceptibility to a region of chromosome 20q12-q13.1. To facilitate the identification and cloning of a diabetes susceptibility gene(s) in this region, we have constructed correlated radiation hybrid and YAC/BAC contig physical maps of the region. A high-resolution radiation hybrid map encompassing 9.5 Mb between the PLC and the CEBPB genes was constructed using 68 markers: 25 polymorphic markers, 15 known genes, 21 ESTs, and 7 random genomic sequences. The physical order of the polymorphic markers within this radiation hybrid map is consistent with published genetic maps. A YAC/BAC contig that gives continuous coverage between PLC and CEBPB was also constructed. This contig was constructed from 24 YACs, 34 BACs, and 1 P1 phage clone onto which 71 markers were mapped: 23 polymorphic markers, 12 genes, 24 ESTs, and 12 random genomic sequences. The radiation hybrid map and YAC/BAC physical map enable precise mapping of newly identified transcribed sequences and polymorphic markers that will aid in linkage and linkage disequilibrium studies and facilitate identification and cloning of candidate Type 2 diabetes susceptibility genes residing in 20q12-q13.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号