首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent transfer of a homing endonuclease gene   总被引:1,自引:0,他引:1       下载免费PDF全文
The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation.  相似文献   

2.
3.
4.
Group I and group II introns are unrelated classes of introns that each encode proteins that facilitate intron splicing and intron mobility. Here we describe a new subfamily of nine introns in fungi that are group II introns but encode LAGLIDADG ORFs typical of group I introns. The introns have fairly standard group IIB1 RNA structures and are inserted into three different sites in SSU and LSU rRNA genes. Therefore, introns should not be assumed to be group I introns based solely on the presence of a LAGLIDADG ORF.  相似文献   

5.
6.
Busse I  Preisfeld A 《Protist》2003,154(1):57-69
The gene coding for the small ribosomal subunit RNA of Ploeotia costata contains an actively splicing group I intron (Pco.S516) which is unique among euglenozoans. Secondary structure predictions indicate that paired segments P1-P10 as well as several conserved elements typical of group I introns and of subclass IC1 in particular are present. Phylogenetic analyses of SSU rDNA sequences demonstrate a well-supported placement of Ploeotia costata within the Euglenozoa; whereas, analyses of intron data sets uncover a close phylogenetic relation of Pco.S516 to S-516 introns from Acanthamoeba, Aureoumbra lagunensis (Stramenopila) and red algae of the order Bangiales. Discrepancies between SSU rDNA and intron phylogenies suggest horizontal spread of the group I intron. Monophyly of IC1 516 introns from Ploeotia costata, A. lagunensis and rhodophytes is supported by a unique secondary structure element: helix P5b possesses an insertion of 19 nt length with a highly conserved tetraloop which is supposed to take part in tertiary interactions. Neither functional nor degenerated ORFs coding for homing endonucleases can be identified in Pco.S516. Nevertheless, degenerated ORFs with His-Cys box motifs in closely related intron sequences indicate that homing may have occurred during evolution of the investigated intron group.  相似文献   

7.
The wide but sporadic distribution of group I introns in protists, plants, and fungi, as well as in eubacteria, likely resulted from extensive lateral transfer followed by differential loss. The extent of horizontal transfer of group I introns can potentially be determined by examining closely related species or genera. We used a phylogenetic approach with a large data set (including 62 novel large subunit [LSU] rRNA group I introns) to study intron movement within the monophyletic lichen family Physciaceae. Our results show five cases of horizontal transfer into homologous sites between species but do not support transposition into ectopic sites. This is in contrast to previous work with Physciaceae small subunit (SSU) rDNA group I introns where strong support was found for multiple ectopic transpositions. This difference in the apparent number of ectopic intron movements between SSU and LSU rDNA genes may in part be explained by a larger number of positions in the SSU rRNA, which can support the insertion and/or retention of group I introns. In contrast, we suggest that the LSU rRNA may have fewer acceptable positions and therefore intron spread is limited in this gene. Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

8.
Group I introns in rRNA genes are clustered in highly conserved regions that include tRNA and mRNA binding sites. This pattern is consistent with insertion of group I introns by direct interaction with exposed regions of rRNA. Integration of the Tetrahymena group I intron (or intervening sequence, IVS) into large subunit rRNA via reverse splicing was investigated using E. coli 23S rRNA as a model substrate. The results show that sequences homologous to the splice junction in Tetrahymena are the preferred site of integration, but that many other sequences in the 23S rRNA provide secondary targets. Like the original splice junction, many new reaction sites are in regions of stable secondary structure. Reaction at the natural splice junction is observed in 50S subunits and to a lesser extent in 70S ribosomes. These results support the feasibility of intron transposition to new sites in rRNA genes via reverse splicing.  相似文献   

9.
Reverse splicing of group I introns is proposed to be a mechanism by which intron sequences are transferred to new genes. Integration of the Tetrahymena intron into the Escherichia coli 23S rRNA via reverse splicing depends on base pairing between the guide sequence of the intron and the target site. To investigate the substrate specificity of reverse splicing, the wild-type and 18 mutant introns with different guide sequences were expressed in E. coli. Amplification of intron-rRNA junctions by RT-PCR revealed partial reverse splicing at 69 sites and complete integration at one novel site in the 23S rRNA. Reverse splicing was not observed at some potential target sites, whereas other regions of the 23S rRNA were more reactive than expected. The results indicate that the frequency of reverse splicing is modulated by the structure of the rRNA. The intron is spliced 10-fold less efficiently in E. coli from a novel integration site (U2074) in domain V of the 23S rRNA than from a site homologous to the natural splice junction of the Tetrahymena 26S rRNA, suggesting that the forward reaction is less favored at this site.  相似文献   

10.
There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally.  相似文献   

11.
Group I introns are autonomous genetic elements that can catalyze their own excision from pre-RNA. Understanding how group I introns move in nuclear ribosomal (r)DNA remains an important question in evolutionary biology. Two models are invoked to explain group I intron movement. The first is termed homing and results from the action of an intron-encoded homing endonuclease that recognizes and cleaves an intronless allele at or near the intron insertion site. Alternatively, introns can be inserted into RNA through reverse splicing. Here, we present the sequences of two large group I introns from fungal nuclear rDNA, which both encode putative full-length homing endonuclease genes (HEGs). Five remnant HEGs in different fungal species are also reported. This brings the total number of known nuclear HEGs from 15 to 22. We determined the phylogeny of all known nuclear HEGs and their associated introns. We found evidence for intron-independent HEG invasion into both homologous and heterologous introns in often distantly related lineages, as well as the "switching" of HEGs between different intron peripheral loops and between sense and antisense strands of intron DNA. These results suggest that nuclear HEGs are frequently mobilized. HEG invasion appears, however, to be limited to existing introns in the same or neighboring sites. To study the intron-HEG relationship in more detail, the S943 group I intron in fungal small-subunit rDNA was used as a model system. The S943 HEG is shown to be widely distributed as functional, inactivated, or remnant ORFs in S943 introns.  相似文献   

12.
Our previous study of the North American biogeography of Bangia revealed the presence of two introns inserted at positions 516 and 1506 in the nuclear-encoded SSU rRNA gene. We subsequently sequenced nuclear SSU rRNA in additional representatives of this genus and the sister genus Porphyra in order to examine the distribution, phylogeny, and structural characteristics of these group I introns. The lengths of these introns varied considerably, ranging from 467 to 997 nt for intron 516 and from 509 to 1,082 nt for intron 1506. The larger introns contained large insertions in the P2 domain of intron 516 and the P1 domain of intron 1506 that correspond to open reading frames (ORFs) with His-Cys box homing endonuclease motifs. These ORFs were found on the complementary strand of the 1506 intron in Porphyra fucicola and P. umbilicalis (HG), unlike the 516 intron in P. abbottae, P. kanakaensis, P. tenera (SK), Bangia fuscopurpurea (Helgoland), and B. fuscopurpurea (MA). Frameshifts were noted in the ORFs of the 516 introns in P. kanakaensis and B. fuscopurpurea (HL), and all ORFs terminated prematurely relative to the amino acid sequence for the homing endonuclease I-Ppo I. This raises the possibility that these sequences are pseudogenes. Phylogenies generated using sequences of both introns and the 18S rRNA gene were congruent, which indicated long-term immobility and vertical inheritance of the introns followed by subsequent loss in more derived lineages. The introns within the florideophyte species Hildenbrandia rubra (position 1506) were included to determine relationships with those in the Bangiales. The two sequences of intron 1506 analyzed in Hildenbrandia were positioned on a well-supported branch associated with members of the Bangiales, indicating possible common ancestry. Structural analysis of the intron sequences revealed a signature structural feature in the P5b domain of intron 516 that is unique to all Bangialean introns in this position and not seen in intron 1506 or other group IC1 introns.  相似文献   

13.
14.
More than 1000 group I introns have been identified in fungal rDNA. Little is known, however, of the splicing and secondary structure evolution of these ribozymes. Here, we use a combination of comparative and biochemical methods to address the evolution and splicing of a vertically inherited group I intron found at position 788 in the fungal small subunit (S) rRNA. The ancestral state of the S788 intron contains a highly conserved core and an extended P5 domain typical of IC1 introns. In contrast, the more derived introns have lost most of P5, and have an accelerated divergence rate within the core region with three functionally important substitutions that unambiguously separate them from the ancestral pool. Of 14 S788 group I introns that were tested for splicing, five, all of the ancestral type, were able to self-splice and produced intron RNA circles in vitro. The more derived S788 introns did not self-splice, and potentially rely on fungal-specific factors to facilitate splicing. In summary, we demonstrate one possible fate of vertically inherited group I introns, the loss of secondary structure elements, lessened selective constraints in the intron core, and ultimately, dependence on host-mediated splicing.  相似文献   

15.
16.
In a recent study of the North American biogeography of the red algae genus Hildenbrandia , the presence of group I introns were noted in the nuclear SSU rRNA gene of the marine species H. rubra (Hildenbrandiales). Group I introns in the nuclear encoded rRNAs have been previously reported in the Hildenbrandiales as well as the Bangiales. All reported introns within the red algae have been identified as belonging to the IC1 subclass and occur at two insertion sites in the nuclear small subunit rRNA (516 and 1506). However, an unclassified intron was discovered at position 989 in the nuclear SSU rRNA gene of a collection of H. rubra from British Columbia, Canada. We have determined that the intron is a member of the IE subclass and this is the first report of an IE intron and an intron in position 989 in the red algae. Phylogenetic analyses of the intron sequences reveal a close relationship between this group IE intron and similar ascomycete and basidiomycete fungal IE introns in the nuclear SSU rRNA genes at positions 989 and 1199. In addition, a common unique helix (structural signature) in the P13 domain of the Hildenbrandia intron and those of the fungi at the 989 and 1199 IE positions in the nuclear SSU rRNA gene also indicates a close relationship. Hence, this study provides evidence for a possible lateral transfer of the IE intron in position 989 between fungal and red algal nuclear SSU rRNA genes.  相似文献   

17.
In a recent study of the North American biogeography of the red algae genus Hildenbrandia, the presence of group I introns were noted in the nuclear SSU rRNA gene of the marine species H. rubra (Hildenbrandiales). Group I introns in the nuclear encoded rRNAs have been previously reported in the Hildenbrandiales as well as the Bangiales. All reported introns within the red algae have been identified as belonging to the IC1 subclass and occur at two insertion sites in the nuclear small subunit rRNA (516 and 1506). However, an unclassified intron was discovered at position 989 in the nuclear SSU rRNA gene of a collection of H. rubra from British Columbia, Canada. We have determined that the intron is a member of the IE subclass and this is the first report of an IE intron and an intron in position 989 in the red algae. Phylogenetic analyses of the intron sequences reveal a close relationship between this group IE intron and similar ascomycete and basidiomycete fungal IE introns in the nuclear SSU rRNA genes at positions 989 and 1199. In addition, a common unique helix (structural signature) in the P13 domain of the Hildenbrandia intron and those of the fungi at the 989 and 1199 IE positions in the nuclear SSU rRNA gene also indicates a close relationship. Hence, this study provides evidence for a possible lateral transfer of the IE intron in position 989 between fungal and red algal nuclear SSU rRNA genes.  相似文献   

18.
Two homologous group I introns, the second intron of the cyt b gene, from related Saccharomyces species differ in their mobility. The S.capensis intron is mobile and encodes the I-ScaI endonuclease promoting intron homing, whilst the homologous S.cerevisiae intron is not mobile, but functions as an RNA maturase promoting splicing. These two intron-encoded proteins differ by only four amino acid substitutions. Taking advantage of the remarkable similarity of the two intron open reading frames and using biolistic transformation of mitochondria, we show that the replacement of only two non-adjacent residues in the S.cerevisiae maturase carboxy-terminal sequence is sufficient to induce a homing-endonuclease activity without losing the splicing function. Also, we demonstrate that these two activities reside in the S.capensis bi2-encoded protein which functions in both splicing and intron mobility in the wild-type cells. These results provide new insight into our understanding of the activity and the evolution of group I intron-encoded proteins.  相似文献   

19.
Group II introns are self-splicing RNAs that also act as retroelements in bacteria, mitochondria, and chloroplasts. Group II introns were identified in Escherichia coli in 1994, but have not been characterized since, and, instead, other bacterial group II introns have been studied for splicing and mobility properties. Despite their apparent intractability, at least five distinct group II introns exist naturally in E. coli strains. To illuminate their function and learn how the introns have dispersed in their natural host, we have investigated their distribution in the ECOR reference collection. Two introns were cloned and sequenced to complete their partial sequences. Unexpectedly, southern blots showed all ECOR strains to contain fragments and/or full-length copies of group II introns, with some strains containing up to 15 intron copies. One intron, E.c.14, has two natural homing sites in IS629 and IS911 elements, and the intron can be present in one, both, or neither homing site in a given strain. Nearly all strains that contain full-length introns also contain unfilled homing sites, suggesting either that mobility is highly inefficient or that most full-length copies are nonfunctional. The data indicate independent mobility of the introns, as well as mobility via the host DNA elements, and overall, the pattern of intron distribution resembles that of IS elements.  相似文献   

20.
Many group I introns encode endonucleases that promote intron homing by initiating a double-stranded break-mediated homologous recombination event. In this work we describe intron homing in Bacillus subtilis phages SPO1 and SP82. The introns encode the DNA endonucleases I-HmuI and I-HmuII, respectively, which belong to the H-N-H endonuclease family and possess nicking activity in vitro. Coinfections of B. subtilis with intron-minus and intron-plus phages indicate that I-HmuI and I-HmuII are required for homing of the SPO1 and SP82 introns, respectively. The homing process is a gene conversion event that does not require the major B. subtilis recombination pathways, suggesting that the necessary functions are provided by phage-encoded factors. Our results provide the first examples of H-N-H endonuclease-mediated intron homing and the first demonstration of intron homing initiated by a nicking endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号