首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A method is described for the solid-phase cyclization of analogues of arginine vasopressin (AVP) in which one of the sulfur atoms of the disulfide bridge is formally replaced by a methylene group and in which the terminal amino group is formally replaced by a hydrogen atom. The linear precursors of these vasopressin analogues were assembled by a standard Merrifield solid-phase procedure and were cyclized by intramolecular peptide bond formation while the peptide was still attached to the resin support; then the final products were simultaneously deprotected and released from the polymeric support by treatment with liquid hydrogen fluoride. The products of this synthetic procedure were isolated by chromatography and exhibited high biological activities. This method for cyclization of resin-bound peptide is being applied in the synthesis of many other cyclopeptides for conformation and biological studies.  相似文献   

2.
Human neutrophil elastase (HNE) has long been linked to the pathology of a variety of inflammatory diseases and therefore is a potential target for therapeutic intervention. At least two other serine proteases, proteinase 3 (Pr3) and cathepsin G, are stored within the same neutrophil primary granules as HNE and are released from the cell at the same time at inflammatory sites. HNE and Pr3 are structurally and functionally very similar, and no substrate is currently available that is preferentially cleaved by Pr3 rather than HNE. Discrimination between these two proteases is the first step in elucidating their relative contributions to the development and spread of inflammatory diseases. Therefore, we have prepared new fluorescent peptidyl substrates derived from natural target proteins of the serpin family. This was done because serpins are rapidly cleaved within their reactive site loop whether they act as protease substrates or inhibitors. The hydrolysis of peptide substrates reflects the specificity of the parent serpin including those from alpha-1-protease inhibitor and monocyte neutrophil elastase inhibitor, two potent inhibitors of elastase and Pr3. More specific substrates for these proteases were derived from the reactive site loop of plasminogen activator inhibitor 1, proteinase inhibitors 6 and 9, and from the related viral cytokine response modifier A (CrmA). This improved specificity was obtained by using a cysteinyl residue at P1 for Pr3 and an Ile residue for HNE and because of occupation of protease S' subsites. These substrates enabled us to quantify nanomolar concentrations of HNE and Pr3 that were free in solution or bound at the neutrophil surface. As membrane-bound proteases resist inhibition by endogenous inhibitors, measuring their activity at the surface of neutrophils may be a great help in understanding their role during inflammation.  相似文献   

3.
Summary We describe a new solid-phase strategy for the selective reduction of the C=N bond in peptide oximes using a trialkylsilane in trifluoroacetic acid. The reduction is performed directly on the resin-bound peptide, with concomitant cleavage of the peptide from the resin and deblocking of protected side chains.  相似文献   

4.
In this study, we investigated the use of poly-mer-bound precursor for generating a radiolabeled prosthetic group to be used for conjugate labeling of biological macromolecules. For the approach, a trialkyltin chloride in which the tin was bound to a hydrophilic PEG-based resin support via one of the alkyl groups was synthesized. This resin was then used to prepare a resin-bound trialkyltin benzoic acid, which in some cases was further derivatized on-resin by converting it to a succinimidyl ester. Exposure of the resin-bound compounds to electrophilic radioiodine (12?I) in either an aqueous or methanol solvent liberated either free radiolabeled [12?I]iodobenzoic acid or its succinimidyl ester without co-release of the resin-bound precursors. Radiochemical yield was between 35% and 75%, depending on the solvent system and precursor. As example applications for the released compounds, the amine-reactive N-succinimidyl-[12?I]iodobenzoate prosthetic group was used for conjugate radiolabeling of a peptide, tomato plant systemin, and two proteins, albumin and IgG antibody. These results demonstrate that resin-bound organotin precursors in which the compound to be labeled is tethered to the support via the tin group to be substituted can be used to produce radioiodine-labeled aromatic prosthetic groups in good specific activity without the need for HPLC purification. This solid-phase approach is potentially adaptable to kit-formulation for performing conjugate radiolabeling of biological macromolecules.  相似文献   

5.
A polyamide-based solid-phase support containing an acid-stable p-(oxymethyl)benzoic acid handle to anchor the COOH-terminal amino acid was utilized in the production of synthetic peptides analogous to amino acid sequences 503-532 from the human immunodeficiency virus (HIV) envelope glycoprotein. The resin-bound peptide was used to induce an antibody response to the native form of glycoprotein 120 in both rabbits and mice. This epitope was detected on the surface of HIV-infected cells and was capable of inducing an in vitro neutralizing HIV antibody response. In addition, sera from some individuals exposed to HIV react with this peptide bound to the resin in a solid-phase immunoassay. These data indicate that we have identified a neutralizing antigenic determinant present on the amino-terminal glycoprotein 120 subunits of HIV by utilizing resin-bound synthetic peptides.  相似文献   

6.
A method for the preparation of a biotinylated resin that can be elongated by standard methods of solid-phase peptide synthesis to give peptides biotinylated at the carboxy terminus is described. This methodology is particularly important for the preparation of biotinylated peptides in which a free amino terminus is required. Coupling of N epsilon-9-fluorenylmethoxycarbonyl-(Fmoc)-N alpha-tert-butyloxycarbonyl(Boc)-L- lysine to p-methylbenzhydrylamine resin, followed by removal of the Fmoc protecting group and reaction with (+)-biotin-4-nitrophenyl ester yielded N alpha-Boc-biocytin-p-methyl-benzhydrylamine resin. The utility of this resin was tested by the synthesis of a biotinylated peptide, Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg-biocytin-NH2, for use as an in vitro substrate for myristoyl-CoA:protein N-myristoyltransferase (NMT), the enzyme that catalyzes protein N-myristoylation. Analysis of the peptide derivative by HPLC and mass spectrometry revealed a single major product of the expected mass, indicating that the biotin group survived cleavage and deprotection with HF. The biotinylated peptide served as a substrate for NMT, and the resulting myristoylated peptide could be quantitatively recovered by adsorption to immobilized avidin.  相似文献   

7.
In this study, several methods for controlled labelling of synthetic peptides by the use of fluorescent compounds (fluorescein isothiocyanate and dimethylaminonaphthalene sulfonyl chloride) were investigated. The first reagent yielded monofluoresceinated, active compounds only when the peptides lacked lysine residues. Monolabelling of peptides in solution with dimethylaminonaphthalenesulphonyl chloride was hindered by the broad reactivity of the reagent, but was achieved by reacting the fluorochrome on protected resin-bound peptides in solid-phase synthesis. The remarkable stability of the linkage allowed the cleavage of the peptide from the resin and deprotection of side-chain functions without hydrolysis of the labelled group. The binding of antipeptide antibodies to the labelled fragments was then estimated using different techniques.  相似文献   

8.
The concept of substrate mimetic strategy represents a new powerful method in the field of enzymatic peptide synthesis. This strategy takes advantage of the shift in the site-specific amino acid moiety from the acyl residue to the ester-leaving group of the carboxyl component enabling acylation of the enzyme by nonspecific acyl residues. As a result, peptide bond formation occurs independently of the primary specificity of proteases. Moreover, because of the coupling of nonspecific acyl residues, the newly formed peptide bond is not subject to secondary hydrolysis achieving irreversible peptide synthesis. Here, we report the combination of solid-phase peptide synthesis with substrate mimetic-mediated enzymatic peptide fragment condensations. First, the utility of the oxime resin strategy for the synthesis of peptide fragments in the form of substrate mimetics esterified as 4-guanidinophenyl-, phenyl- and mercaptopropionic acid esters was investigated. The study was completed by using the resulting N(alpha)-protected peptide esters as acyl donors in trypsin-, alpha-chymotrypsin- and V8 protease-catalyzed fragment condensations.  相似文献   

9.
Summary Fast and convenient binding assays using synthetic peptides are of utmost and increasing importance, especially in the search for lead structures or in the field of diagnostics. A polymeric support suitable for solid-phase peptide synthesis was functionalized with two different anchor groups. The interior part of the aminomethylated polystyrene-1%-divinylbenzene resin beads, comprising about 98% of the total loading capacity, was modified by the acid-labile ADPV anchor whereas the 2% outer surface of the polymer was covalently coated with a PEG 10 000 derivative which renders the resin surface hydrophilic and biocompatible. The novel resin was characterized by introducing marker amino acids and by infrared spectroscopy. Employing this bifunctionalized resin for peptide synthesis, free as well as polymer-bound peptides were obtained which were tested for recognition by antibody. The resin-bound peptides proved to be suitable for ELISA and fluorescence assays, as shown by confocal laser microscopic investigations. Peptides from the interior part were obtained in high yield and purity as analyzed by HPLC, electrospray mass spectrometry and Edman degradation.  相似文献   

10.
A method has been developed to determine preferred residue substitutions in the P' position of peptide substrates for proteolytic enzymes. The method has been validated with four different enzymes; the angiotensin I-converting enzyme, atrial dipeptidyl carboxyhydrolase, bacterial dipeptidyl carboxyhydrolase, and meprin A. A mixture of N-acylated potential peptide-substrates for each of the enzymes was prepared in a single synthesis procedure on the same solid-phase synthesis resin. The peptides were identical in all residue positions except the P' position to be studied, into which numerous amino acid residues were incorporated on a theoretical equimolar basis. After cleavage and extraction of the peptides from the resin, no attempt was made to purify them individually; the exact concentration of each peptide in the mixture was determined by quantitative amino acid analysis. Incubation of an enzyme with its peptide-substrate mixture at [S] much less than Km yielded peptide hydrolytic products with newly exposed N-termini. The identity and amount of each hydrolysis product was determined by automated N-terminal sequence analysis. One cycle of sequencing revealed preferred amino acid substitutions in the P'1 position, two cycles the P'2 position, and so forth. Comparison of the rates of production of the various products indicates the preferred substitution in that particular P' position. New information on the substrate specificities of each of the enzymes tested was obtained and it is clear that this approach can be applied to any protease with a defined (or suspected) point of cleavage in a peptide substrate.  相似文献   

11.
Quantitation of proteolytic enzyme concentration can be accomplished by measuring the release, due to primary enzyme catalysis, of a second enzyme bound to a particulate substrate. As the primary enzyme acts on the substrate, release of the indicator enzyme into the surrounding medium occurs, which in turn can be quantitated colorimetrically, and under suitable reaction conditions the amount of indicator enzyme released is directly proportional to the amount of primary enzyme present. A specific example of such an assay is that for elastolytic activity using powdered elastin labeled with horseradish peroxidase. The detection sensitivity of the system described is 1 ng/ml of pancreatic elastase, and the dynamic range of the assay is 2 orders of magnitude. The reaction time for optimal elastase detection sensitivity is 3 h. For the assay, horseradish peroxidase is coupled to insoluble elastin. Labeled elastin is incubated with varying amounts of pancreatic elastase. The elastase in the test sample solubilizes the elastin and the horseradish peroxidase bound to it. The amount of peroxidase released is then quantified using the colorimetic reaction produced by catalysis of 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulfonate)-H2O2. For a fixed, nonsaturating concentration of elastase, the amount of peroxidase released is proportional to the elastase concentration.  相似文献   

12.
The hexokinase/glucose-6-phosphate dehydrogenase coupled enzyme system was used to assay for plant thioglucoside glucohydrolase (myrosinase, EC 3.2.3.1) by measuring the rate of glucose released during hydrolysis of glucosinolates. This coupled assay was compared with two other assays for myrosinase: a pH-stat assay that measures the rate of acid released during glucosinolate hydrolysis, and a spectrophotometric assay in which the decrease in the absorbance at 227.5 nm is used to measure the disappearance of the substrate, 2-propenylglucosinolate (DSA assay). The coupled and pH-stat assays were found to give comparable activities and were linear with enzyme concentration over the range 0 to 30 micrograms. The DSA assay gave lower myrosinase activity in comparison to the coupled and pH-stat assays. This is due to the lower concentrations of substrate and activator (ascorbate) which must be used in the assay. The DSA assay was found to give a nonlinear relationship with enzyme concentration over the range 2 to 30 micrograms. For these reasons this assay was found to be unsatisfactory. The coupled assay was found to be more sensitive and more widely applicable than the pH-stat assay as a routine continuous assay for myrosinase activity.  相似文献   

13.
Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.5-fold TIMP-1 hydrolysis by HNE. The kinetic parameters of this reaction were monitored with the aid of a FRET-peptide substrate that mimics the TIMP-1 cleavage site in pre-steady-state conditionsby using a stopped-flow fluorescence system. The hydrolysis of the FRET-peptide substrate by HNE exhibits a pre-steady-state burst phase followed by a linear, steady-state pseudo-first-order reaction. The HNE acylation step (k 2 = 21±1 s−1) was much higher than the HNE deacylation step (k 3 = 0.57±0.05 s−1). The presence of heparin induces a dramatic effect in the pre-steady-state behavior of HNE. Heparin induces transient lag phase kinetics in HNE cleavage of the FRET-peptide substrate. The pre-steady-state analysis revealed that heparin affects all steps of the reaction through enhancing the ES complex concentration, increasing k 1 2.4-fold and reducing k −1 3.1-fold. Heparin also promotes a 7.8-fold decrease in the k 2 value, whereas the k 3 value in the presence of heparin was increased 58-fold. These results clearly show that heparin binding accelerates deacylation and slows down acylation. Heparin shifts the HNE pH activity profile to the right, allowing HNE to be active at alkaline pH. Molecular docking and kinetic analysis suggest that heparin induces conformational changes in HNE structure. Here, we are showing for the first time that heparin is able to accelerate the hydrolysis of TIMP-1 by HNE. The degradation of TIMP-1is associated to important physiopathological states involving excessive activation of MMPs.  相似文献   

14.
The uncontrolled proteolytic activity in lung secretions during lung inflammatory diseases might be due to the resistance of membrane-bound proteases to inhibition. We have used a new fluorogenic neutrophil elastase substrate to measure the activity of free and membrane-bound human neutrophil elastase (HNE) in the presence of alpha1-protease inhibitor (alpha1-Pi), the main physiological inhibitor of neutrophil serine proteases in lung secretions. Fixed and unfixed neutrophils bore the same amounts of active HNE at their surface. However, the HNE bound to the surface of unfixed neutrophils was fully inhibited by stoichiometric amounts of alpha1-Pi, unlike that of fixed neutrophils. The rate of inhibition of HNE bound to the surface of unfixed neutrophils was the same as that of free HNE. In the presence of alpha1-Pi, membrane-bound elastase is almost entirely removed from the unfixed neutrophil membrane to form soluble irreversible complexes. This was confirmed by flow cytometry using an anti-HNE mAb. HNE activity rapidly reappeared at the surface of HNE-depleted cells when they were triggered with the calcium ionophore A23187, and this activity was fully inhibited by stoichiometric amounts of alpha1-Pi. HNE was not released from the cell surface by oxidized, inactive alpha1-Pi, showing that active inhibitor is required to interact with active protease from the cell surface. We conclude that HNE activity at the surface of human neutrophils is fully controlled by alpha1-Pi when the cells are in suspension. Pericellular proteolysis could be limited to zones of contact between neutrophils and subjacent protease substrates where natural inhibitors cannot penetrate.  相似文献   

15.
A new solid-phase labeling strategy for the preparation of (99m)Tc and Re chelate complexes and associated peptide derivatives, was developed. Resin-bound monoamide monoamine (MAMA) chelates were prepared in such a manner that upon the addition of a suitable Re(V) and Tc(V) precursor the target metal complexes were selectively released from the resin. The desired products were isolated from unreacted ligand by a simple filtration/solid-phase extraction procedure. In addition to the preparation of a series of functionalized ligands, a peptide conjugate was constructed from one of the resin-bound chelates using a conventional automated peptide synthesizer. The yields of the Re chelate complexes were typically greater than 70%, while the maximum yield for reactions run at the tracer level using (99m)Tc was 50%. The reported approach has a number of attractive features, including the opportunity to prepare libraries of novel agents, the ability to isolate macroscopic amounts of Re complexes for use in in vitro screening studies and as well-characterized standards for tracer level work, and the ability to produce (99m)Tc complexes that are free of any unreacted starting material without having to employ preparative HPLC.  相似文献   

16.
Attachment of the side-chain carboxyl of the protected aspartic or glutamic acid ester to the resin support has been established for the solid-phase synthesis of the asparagine or glutamine peptide. After further elongation of the α-amino deprotected resin-bound peptide ester with protected peptide fragments and the final detachment from the resin support by ammonolysis, the larger peptides containing, or preferably C-terminated with, asparagine or glutamine could be obtained. Thus, the C-peptide of human proinsulin was prepared by coupling to the resin-bound dipeptide derivative, Leu-Glu(OCH2Ph®)·OtBu, with six fragments consecutively. It was obtained in an overall yield of 36% after detaching from the resin with alcoholic ammonia, followed by mild acidolysis, DEAE cellulose chromatography, and gel filtration. This procedure has now been applied to the synthesis of the C-terminal fragment of the insulin A chain ending in asparagine, and also to the synthesis of the threonine or serine peptide, where the anchorage to the resin was designed by the reaction of the sidechain hydroxyl with succinic anhydride in the presence of 4-dimethylaminopyridine to form the hemiester of succinic acid, which in turn was condensed to the aminomethyl resin by the DCC-HOBt procedure. Model experiments on the synthesis of the Z-Thr(CO-CH2CH2CONHCH2Ph®)·OtBu and Bpoc-Lys(Boc)-Thr(COCH2CH2CONHCH2Ph®)·OtBu, as well as their detachment from the resin by amminolysis or hydrazinolysis, have shown the potential for a milder process in the solid-phase synthesis of larger peptides.  相似文献   

17.
An efficient solid-phase synthesis of Fmoc (glyco)peptide thioesters is described. Fmoc x Ser x OAll and Fmoc x Thr x OAll bound to resin with a silyl ether linker were deallylated by Pd(0) catalysis and condensed with thiophenol, benzyl mercaptane, and ethyl 3-mercaptopropionate by activation with DCC/HOBt. The thioesters were released from the resin either by treatment with CsF-AcOH or by acidic hydrolysis. The effectiveness of this silyl linker strategy is further demonstrated by the synthesis of more complex (glyco)peptide thioesters 25, 26 and 27 involving N-->C and C-->N peptide elongation.  相似文献   

18.
Substrate specificity of human pancreatic elastase 2   总被引:4,自引:0,他引:4  
The substrate specificity of human pancreatic elastase 2 was investigated by using a series of peptide p-nitroanilides. The kinetic constants, kcat and Km, for the hydrolysis of these peptides revealed that this serine protease preferentially hydrolyzes peptides containing P1 amino acids which have medium to large hydrophobic side chains, except for those which are disubstituted on the first carbon of the side chain. Thus, human pancreatic elastase 2 appears to be similar in peptide bond specificity to the recently described porcine pancreatic elastase 2 [Gertler, A., Weiss, Y., & Burstein, Y. (1977) Biochemistry 16, 2709] but differs significantly in specificity from porcine elastase 1. The best substrates for human pancreatic elastase 2 were glutaryl-Ala-Ala-Pro-Leu-p nitroanilide and succinyl-Ala-Ala-Pro-Met-p-nitroanilide. However, there was little difference among substrates with leucine, methionine, phenylalanine, tyrosine, norvaline, or norleucine in the P1 position. Changes in the hydrolysis rate of peptides with differing P5 residues indicate that this enzyme has an extended binding site which interacts with at least five residues of peptide substrates. The overall catalytic efficiency of human pancreatic elastase 2 is significantly lower than that of porcine elastase 1 or bovine chymotrypsin with the compounds studied.  相似文献   

19.
A kinetic model incorporating dynamic adsorption, enzymatic hydrolysis, and product inhibition was developed for enzymatic hydrolysis of differently pretreated fibers from a nitrogen-rich lignocellulosic material-dairy manure. The effects of manure proteins on the enzyme adsorption profile during hydrolysis have been discussed. Enzyme activity, instead of protein concentration, was used to describe the enzymatic hydrolysis in order to avoid the effect of manure protein on enzyme protein analysis. Dynamic enzyme adsorption was modeled based on a Langmiur-type isotherm. A first-order reaction was applied to model the hydrolysis with consideration being given for the product inhibition. The model satisfactorily predicted the behaviors of enzyme adsorption, hydrolysis, and product inhibition for all five sample manure fibers. The reaction conditions were the substrate concentrations of 10-50 g/L, enzyme loadings of 7-150 FPU/g total substrate, and the reaction temperature of 50 degrees C.  相似文献   

20.
Yang J  Zhang X  Yong Q  Yu S 《Bioresource technology》2011,102(7):4905-4908
The feasibility of three-stage hydrolysis of steam-exploded corn stover at high-substrate concentration was investigated. When substrate concentration was 30% and enzyme loading was 15-30 FPU/g cellulose, three-stage (9+9+12 h) hydrolysis could reach a hydrolysis yield of 59.9-81.4% in 30 h. Compared with one-stage hydrolysis for 72 h, an increase of 34-37% in hydrolysis yield could be achieved. When steam-exploded corn stover was used as the substrate for enzyme synthesis and hydrolysis was conducted at a substrate concentration of 25% with an enzyme loading of 20 FPU/g cellulose, a hydrolysis yield of 85.1% was obtained, 19% higher than that the commercial cellulase could reach under the same conditions. The removal of end products was suggested to improve the adsorption of cellulase on the substrate and enhance the productivity of enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号