首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exoglucanase gene (cex) and the endoglucanase A gene (cenA) from Cellulomonas fimi were subcloned into the Escherichia coli/Brevibacterium lactofermentum shuttle vector pBK10. Both genes were expressed to five to ten times higher levels in B. lactofermentum than in E. coli, probably because these genes were expressed from C. fimi promoters. In B. lactofermentum virtually all of the enzyme activities were in the culture supernatant. This system will facilitate analysis of the expression of the C. fimi genes in and secretion of their products from a Gram-positive bacterium.  相似文献   

2.
Mannan-degrading enzymes from Cellulomonas fimi.   总被引:1,自引:0,他引:1  
The genes man26a and man2A from Cellulomonas fimi encode mannanase 26A (Man26A) and beta-mannosidase 2A (Man2A), respectively. Mature Man26A is a secreted, modular protein of 951 amino acids, comprising a catalytic module in family 26 of glycosyl hydrolases, an S-layer homology module, and two modules of unknown function. Exposure of Man26A produced by Escherichia coli to C. fimi protease generates active fragments of the enzyme that correspond to polypeptides with mannanase activity produced by C. fimi during growth on mannans, indicating that it may be the only mannanase produced by the organism. A significant fraction of the Man26A produced by C. fimi remains cell associated. Man2A is an intracellular enzyme comprising a catalytic module in a subfamily of family 2 of the glycosyl hydrolases that at present contains only mammalian beta-mannosidases.  相似文献   

3.
The cenC gene of Cellulomonas fimi, encoding endoglucanase CenC, has an open reading frame of 1101 codons closely followed by a 9 bp inverted repeat. The predicted amino acid sequence of mature CenC, which is 1069 amino acids long, is very unusual in that it has a 150-amino-acid tandem repeat at the N-terminus and an unrelated 100-amino-acid tandem repeat at the C-terminus. CenC belongs to subfamily E1 of the beta-1,4-glycanases. High-level expression in Escherichia coli of cenC from a 3.6 kbp fragment of C. fimi DNA leads to levels of CenC which exceed 10% of total cell protein. Most of the CenC is in the cytoplasm in an inactive form. About 60% of the active fraction of CenC is in the periplasm. The catalytic properties of the active CenC are indistinguishable from those of native CenC from C. fimi. The Mr of CenC from E. coli and C. fimi is approximately 130 kDa. E. coli and C. fimi also produce an endoglucanase, CenC', of approximate Mr 120kDa and with the same N-terminal amino acid sequence and catalytic properties as CenC. CenC' appears to be a proteolytic product of CenC. CenC and CenC' can bind to cellulose and to Sephadex. CenC is the most active component of the C. fimi cellulase system isolated to date.  相似文献   

4.
Cellulomonas fimi genomic DNA encoding xylanase activity has been cloned and expressed in Escherichia coli. As judged by DNA hybridization and restriction analysis, twelve xylanase-positive clones carried a minimum of four different xylanase (xyn) genes. The encoded enzymes were devoid of cellulase activity but three of the four bound to Avicel.  相似文献   

5.
We demonstrate homology between the catalytic domains of exoglucanase (1,4-beta-D-glucan cellobiohydrolase, EC 3.2.1.91) from Cellulomonas fimi and those of endoxylanases (1,4-beta-D-xylan xylanohydrolases, EC 3.2.1.8) from Bacillus sp. strain C-125 and the fungus Cryptococcus albidus; and between the catalytic domains of endoglucanase (1,4-(1,3:1,4)-beta-D-glucan 4-glucanohydrolase, EC 3.2.1.4) from Cellulomonas fimi and exoglucanase II from Trichoderma reesei. These five enzymes apparently evolved by reshuffling of two catalytic domains and several substrate-binding domains.  相似文献   

6.
Glycosylated cellulases from Cellulomonas fimi were compared with their non-glycosylated counterparts synthesized in Escherichia coli from recombinant DNA. Glycosylation of the enzymes does not significantly affect their kinetic properties, or their stabilities towards heat and pH. However, the glycosylated enzymes are protected from attack by a C. fimi protease when bound to cellulose, while the non-glycosylated enzymes yield active, truncated products with greatly reduced affinity for cellulose.  相似文献   

7.
8.
The DNA sequences of the Thermomonospora fusca genes encoding cellulases E2 and E5 and the N-terminal end of E4 were determined. Each sequence contains an identical 14-bp inverted repeat upstream of the initiation codon. There were no significant homologies between the coding regions of the three genes. The E2 gene is 73% identical to the celA gene from Microbispora bispora, but this was the only homology found with other cellulase genes. E2 belongs to a family of cellulases that includes celA from M. bispora, cenA from Cellulomonas fimi, casA from an alkalophilic Streptomyces strain, and cellobiohydrolase II from Trichoderma reesei. E4 shows 44% identity to an avocado cellulase, while E5 belongs to the Bacillus cellulase family. There were strong similarities between the amino acid sequences of the E2 and E5 cellulose binding domains, and these regions also showed homology with C. fimi and Pseudomonas fluorescens cellulose binding domains.  相似文献   

9.
10.
Structure of the gene encoding the exoglucanase of Cellulomonas fimi   总被引:29,自引:0,他引:29  
G O'Neill  S H Goh  R A Warren  D G Kilburn  R C Miller 《Gene》1986,44(2-3):325-330
In Cellulomonas fimi the cex gene encodes an exoglucanase (Exg) involved in the degradation of cellulose. The gene now has been sequenced as part of a 2.58-kb fragment of C. fimi DNA. The cex coding region of 1452 bp (484 codons) was identified by comparison of the DNA sequence to the N-terminal amino acid (aa) sequence of the Exg purified from C. fimi. The Exg sequence is preceded by a putative signal peptide of 41 aa, a translational initiation codon, and a sequence resembling a ribosome-binding site five nucleotides (nt) before the initiation codon. The nt sequence immediately following the translational stop codon contains four inverted repeats, two of which overlap, and which can be arranged in stable secondary structures. The codon usage in C. fimi appears to be quite different from that of Escherichia coli. A dramatic (98.5%) bias occurs for G or C in the third position for the 35 codons utilized in the cex gene.  相似文献   

11.
Endoglucanase C (CenC) from Cellulomonas fimi binds to cellulose and to Sephadex. The enzyme has two contiguous 150-amino-acid repeats (N1 and N2) at its N-terminus and two unrelated contiguous 100-amino-acid repeats (C1 and C2) at its C-terminus. Polypeptides corresponding to N1, N1N2, C1, and C1C2 were produced by expression of appropriate cenC gene fragments in Escherichia coli. N1N2, but not N1 alone, binds to Sephadex; both polypeptides bind to Avicel, (a heterogeneous cellulose preparation containing both crystalline and non-crystalline components). Neither C1 nor C1C2 binds to Avicel or Sephadex. N1N2 and N1 bind to regenerated ('amorphous') cellulose but not to bacterial crystalline cellulose; the cellulose-binding domain of C. fimi exoglucanase Cex binds to both of these forms of cellulose. Amino acid sequence comparison reveals that N1 and N2 are distantly related to the cellulose-binding domains of Cex and C. fimi endoglucanases A and B.  相似文献   

12.
Two xylanase-encoding genes, named xyn11A and xyn10B, were isolated from a genomic library of Cellulomonas pachnodae by expression in Escherichia coli. The deduced polypeptide, Xyn11A, consists of 335 amino acids with a calculated molecular mass of 34,383 Da. Different domains could be identified in the Xyn11A protein on the basis of homology searches. Xyn11A contains a catalytic domain belonging to family 11 glycosyl hydrolases and a C-terminal xylan binding domain, which are separated from the catalytic domain by a typical linker sequence. Binding studies with native Xyn11A and a truncated derivative of Xyn11A, lacking the putative binding domain, confirmed the function of the two domains. The second xylanase, designated Xyn10B, consists of 1,183 amino acids with a calculated molecular mass of 124,136 Da. Xyn10B also appears to be a modular protein, but typical linker sequences that separate the different domains were not identified. It comprises a N-terminal signal peptide followed by a stretch of amino acids that shows homology to thermostabilizing domains. Downstream of the latter domain, a catalytic domain specific for family 10 glycosyl hydrolases was identified. A truncated derivative of Xyn10B bound tightly to Avicel, which was in accordance with the identified cellulose binding domain at the C terminus of Xyn10B on the basis of homology. C. pachnodae, a (hemi)cellulolytic bacterium that was isolated from the hindgut of herbivorous Pachnoda marginata larvae, secretes at least two xylanases in the culture fluid. Although both Xyn11A and Xyn10B had the highest homology to xylanases from Cellulomonas fimi, distinct differences in the molecular organizations of the xylanases from the two Cellulomonas species were identified.  相似文献   

13.
14.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

15.
Endo-beta-1,4-glucanase B (CenB) is a large (110 kDa) extracellular enzyme from the cellulolytic bacterium Cellulomonas fimi. CenB contains five domains, including a typical C.fimi cellulose-binding domain, separated by distinctive linker polypeptides (Meinke et al., 1991b). X-ray scattering analyses show that CenB has a highly elongated shape resembling beads on a string. The sizes of the polypeptides produced by treatment of CenB with proteases, together with their N-terminal amino acid sequences, show that at least two of the four linkers connecting the five domains of CenB are more sensitive to proteolysis than the domains themselves. It is concluded that the beads represent the domains of CenB, the string represents the linkers.  相似文献   

16.
17.
We used the yeast MEL1 gene for secreted alpha-galactosidase to construct cartridges for the regulated expression of foreign proteins from Saccharomyces cerevisiae. The gene for a Cellulomonas fimi beta-1,4-exoglucanase was inserted into one cartridge to create a fusion of the alpha-galactosidase signal peptide to the exoglucanase. Yeast transformed with plasmids containing this construction produced active extracellular exoglucanase when grown under conditions appropriate to MEL1 promoter function. The cells also produced active intracellular enzyme. The secreted exoglucanase was N-glycosylated and was produced continuously during culture growth. It hydrolyzed xylan, carboxymethyl cellulose, 4-methylumbelliferyl-beta-d-cellobiose, and p-nitrophenyl-beta-d-cellobiose. A comparison of the recombinant S. cerevisiae enzyme with the native C. fimi enzyme showed the yeast version to have an identical K(m) and pH optimum but to be more thermostable.  相似文献   

18.
G P O'Neill  R A Warren  D G Kilburn  R C Miller 《Gene》1986,44(2-3):331-336
A leader sequence of 41 amino acids (aa) has been proposed as the signal sequence for the exoglucanase (Exg) from Cellulomonas fimi. The ability of this 41-aa peptide to function as a leader sequence has been shown here by gene fusion experiments in Escherichia coli. A hybrid leader sequence containing C-terminal 37 aa of the leader peptide and N-terminal 6 aa of beta-galactosidase (beta Gal) directed export of the Exg into the periplasm of E. coli. In contrast, hybrid beta Gal-Exg proteins in which the leader sequence is not present are retained in the cytoplasm.  相似文献   

19.
Single crystals of the catalytic domain of Cex, an exo-beta-1,4-glucanase and beta-1,4-xylanase from the cellulolytic bacterium Cellulomonas fimi, have been grown in the presence of polyethylene glycol 4000 using the vapour diffusion technique. The crystals, which diffract to better than 2.0 A resolution, belong to space group P4(1)2(1)2 or P4(3)2(1)2 and have cell constants: a = b = 88.21 A, c = 81.10 A; alpha = beta = gamma = 90 degrees.  相似文献   

20.
The DNA sequence of a mixed-linkage beta-glucanase (1,3-1,4-beta-D-glucan 4-glucanohydrolase [EC 3.2.1.73]) gene from Fibrobacter succinogenes cloned in Escherichia coli was determined. The general features of this gene are very similar to the consensus features for other gram-negative bacterial genes. The gene product was processed for export in E. coli. There is a high level of sequence homology between the structure of this glucanase and the structure of a mixed-linkage beta-glucanase from Bacillus subtilis. The nonhomologous region of the amino acid sequence includes a serine-rich region containing five repeats of the sequence Pro-Xxx-Ser-Ser-Ser-Ser-(Ala or Val) which may be functionally related to the serine-rich region observed in Pseudomonas fluorescens cellulase and the serine- and/or threonine-rich regions observed in Cellulomonas fimi endoglucanase and exoglucanase, in Clostridium thermocellum endoglucanases A and B, and in Trichoderma reesei cellobiohydrolase I, cellobiohydrolase II, and endoglucanase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号