首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Halomonas eurihalina strains F2-7, H28, H96, H212 and H214 were capable of producing large amounts of exopolysaccharides (EPS) in MY medium with added crude oil. The biopolymers showed lower carbohydrate and protein content than those synthesised in control medium without oil. Nevertheless, the percentages of uronic acids, acetyls and sulphates were higher. The emulsifying activity of biopolymers was measured; crude oil was the substrate most efficiently emulsified. Furthermore, all the EPS tested emulsified higher volumes of crude oil than the commercial surfactants used as controls. We have also proved the effectiveness of both Halomonas eurihalina strains and their EPS to select indigenous bacteria able to grow in the presence of polycyclic aromatic hydrocarbons (naphthalene, phenanthrene and pyrene) from waste crude oil. The majority of isolated strains belonged to the genus Bacillus.  相似文献   

2.

Objectives

To construct a Bacillus subtilis strain for improved uridine production.

Results

The AAG2846–2848 fragment of the pyrAB gene, encoding carbamoylphosphate synthetase, was deleted in B. subtilis TD246 leading to a 245% increase of uridine production and the conversion from glucose to uridine increased by 10.5%. Overexpression of the pyr operon increased the production of uridine by a further 31% and the conversion rate of glucose to uridine was increased by 18%. In addition, the blocking of arginine synthesis or disabling of glutamate dehydrogenase significantly enhanced the uridine production. The highest-producing strain, B. subtilis TD297, accumulated 11 g uridine/l with a yield of 240 mg uridine/g glucose in shake-flask cultivation.

Conclusion

This is the first report of engineered B. subtilis strains which can produce more than 11 g uridine/l, with a yield reaching 240 mg uridine/g glucose in shake-flask cultivation.
  相似文献   

3.
Halomonas eurihalina strain H-28 is a moderately halophilic bacterium that produces an extracellular polysaccharide not only in media with glucose but also in media supplemented with hydrocarbons (n-tetradecane, n-hexadecane, n-octane, xylene, mineral light oil, mineral heavy oil, petrol, or crude oil). In this study we investigated yield production, chemical composition, viscosity, and emulsifying activity of exopolysaccharides (EPS) extracted from the different media used. The largest amounts of biopolymer were synthesized in media with glucose and n-hexadecane. Chemical composition varied with culture conditions; thus EPS from cultures grown in the presence of hydrocarbons had lower contents of carbohydrates and proteins than EPS from media with glucose. However, the percentages of uronic acids, acetyls, and sulfates were always higher than glucose EPS. Crude oil was the substrate most effectively emulsified. All EPS were capable of emulsifying crude oil more efficiently than the three control surfactants tested (Tween 20, Tween 80, and Triton X-100). All polymers gave low viscosity solutions. EPS H28 could be attractive for application in the oil industry and/or in bioremediation processes, bearing in mind not only its functional properties, but also the capacity of producer strain H-28 to grow in the presence of high salt concentrations and oil substrates.  相似文献   

4.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

5.
Several reports in the literature have described a differential sensitivity to ketolide antibiotics in ermB strains of Streptococcus pyogenes and Streptococcus pneumoniae resistant to erythromycin. Strains of S. pyogenes and S. pneumoniae carrying different erm gene alleles were examined for their susceptibility to the ketolide antibiotics cethromycin (ABT-773) and telithromycin. The effect of the antibiotics on cell growth and viability was assessed as were effects on protein synthesis and 50S ribosomal subunit formation. The susceptibility of wild-type strains of both organisms was compared with effects in strains containing the ermA and ermB methyltransferase genes. A wild-type antibiotic-susceptible strain of S. pyogenes was comparable to an ermA strain of the organism in its ketolide sensitivity, with IC50 values for 50% inhibition of protein synthesis and 50S ribosomal subunit formation of 10 ng/mL for cethromycin and 16 ng/mL for telithromycin. An S. pneumoniae strain with the ermB gene and an S. pyogenes strain with the ermA gene were also similar in their sensitivity to ketolide inhibition. IC50 values for inhibition of translation and subunit formation in S. pneumoniae (ermB) were 30 ng/mL and 55 ng/mL and for the ermA strain of S. pyogenes they were 15 ng/mL and 35 ng/mL respectively. By contrast, an S. pyogenes ermB strain was significantly more resistant to both ketolides, with IC50 values for inhibition of 50S synthesis of 215 and 380 ng/mL for the two ketolides. Experiments were conducted to examine ribosome synthesis and translational activity in the two ermB strains at intervals during growth in the presence of each antibiotic. Cell viability and 50S subunit formation were dramatically reduced in the S. pneumoniae strain during continued growth with either drug. By contrast, the ketolides had little effect on the S. pyogenes strain growing with the antibiotics. The results indicate that ketolides have a reduced inhibitory effect on translation and 50S subunit synthesis in S. pyogenes with the ermB gene compared with the other strains examined.  相似文献   

6.
Control of pyrimidine formation was examined in Pseudomonas fulva ATCC 31418. Pyrimidine supplementation lowered pyrimidine biosynthetic pathway enzyme activities in cells grown on glucose or succinate as a carbon source indicating possible repression of enzyme synthesis. Pyrimidine limitation experiments were conducted using an orotidine 5′-monophosphate decarboxylase mutant strain isolated in this study. Compared to uracil-supplemented, glucose-grown mutant cells, pyrimidine limitation of this strain caused aspartate transcarbamoylase, dihydroorotase, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase activities to increase about 6-, 13-, 3-, 15-fold, respectively, which confirmed regulation of enzyme synthesis by pyrimidines. At the level of enzyme activity, transcarbamoylase activity in Ps. fulva was strongly inhibited by pyrophosphate, CTP, GTP and GDP under saturating substrate concentrations.  相似文献   

7.
In the course of the search for N2O-utilizing microorganisms, two novel strains of haloalkaliphilic denitrifying bacteria, Z-7009 and AIR-2, were isolated from soda lakes of Mongolia and Kenya. These microorganisms are true alkaliphiles and grow in the pH ranges of 8.0–10.5 and 7.5–10.6, respectively. They are facultative anaerobes with an oxidative type of metabolism, able to utilize a wide range of organic substrates and reduce nitrate, nitrous oxide, and, to a lesser extent, nitrite to gaseous nitrogen. They can oxidize sulfide in the presence of acetate as the carbon source and nitrous oxide (strain Z-7009) or nitrate (strain AIR-2) as the electron acceptor. The strains require Na+ ions. They grow at 0.16–2.2 M Na+ (Z-7009) and 0.04–2.2 M Na+ (AIR-2) in the medium. The G+C contents of the DNA of strains Z-7009 and AIR-2 are 67.9 and 65.5 mol %, respectively. According to the results of 16S rRNA gene sequencing and DNA-DNA hybridization, as well as on the basis of physiological properties, the strains were classified as new species of the genus Halomonas: Halomonas mongoliensis, with the type strain Z-7009T (=DSM 17332, =VKM B2353), and Halomonas kenyensis, with the type strain AIR-2T (=DSM 17331, =VKM B2354).  相似文献   

8.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

9.
A Gram-stain negative, non-motile, rod-shaped bacterial strain, designated 2-56T, was isolated from water and characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 2-56T belongs to the family Flavobacteriaceae in the phylum Bacteroidetes and is closely related to Flavobacterium paronense KNUS1T (98.4%) and Flavobacterium collinsense 4-T-2T (96.7%). The G?+?C content of the genomic DNA of strain 2-56T was 33.4 mol%. The isolate contained MK-6 as the predominant respiratory quinone, and iso-C15:1 G (15.9%), iso-C15:0 (15.8%), iso-C17:0 3-OH (10.7%), and iso-C15:0 3-OH (9.6%) were the major fatty acids. The major polar lipids were phosphatidylethanolamine and an unidentified lipid. The phenotypic and chemotaxonomic data support the affiliation of strain 2-56T with the genus Flavobacterium. However, the DNA–DNA relatedness between the isolate and F. paronense and F. collinsense were 35.7 and 21.5%, respectively, clearly showing that strain 2-56T is not related to them at the species level. Strain 2-56T could be clearly differentiated from its close neighbours on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain 2-56T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium knui sp. nov. is proposed. The type strain is 2-56T (=?KCTC 62061T?=?JCM 32247T).  相似文献   

10.
Streptomyces nogalater Lv65 (= IMET 43360) is a producer of the anthracycline antitumor antibiotic nogalamycin. In this work, some aspects of the regulation of nogalamycin production by this strain were studied. Insertional inactivation of the snorA gene in the chromosome of the nogalamycin producer was carried out; as a result, strain S. nogalater A1 was obtained. This is the first successful gene knockout in S. nogalater. It was demonstrated that strain A1 is characterized by the absence of synthesis of nogalamycin and its precursors, as well as by the inability to form spores. As a result of the knockout complementation with an entire copy of the snorA gene, resumption of the nogalamycin synthesis by strain S. nogalater A1 was observed; in the case of the wild-type strain S. nogalater Lv65, insertion resulted in an increase in the antibiotic synthesis. Obtained results indicate that the snorA gene is involved in positive regulation of nogalamycin biosynthesis.  相似文献   

11.
A Gram-negative, motile, rod-shaped, aerobic bacterial strain, designated S7-2-11T, was isolated from apple orchard soil from Gyeongsangnam-do Province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain S7-2-11T belongs to the family Cytophagaceae in phylum Bacteroidetes, and is closely related to Spirosoma luteolum 16F6ET (94.2% identity), Spirosoma knui 15J8-12T (92.7%), and Spirosoma linguale DSM 74T (91.0%). The G + C content of the genomic DNA of strain S7-2-11T was 49.8 mol%. Strain S7-2-11T contained summed feature 3 (C16:1 ω7c/C16:1 ω6c; 35.1%), C16:1 ω5c (22.4%), C15:0 iso (13.9%), and C17:0 iso 3-OH (10.6%) as major cellular fatty acids, and MK-7 as the predominant respiratory quinone. The main polar lipids were phosphatidylethanolamine, an unidentified aminophospholipid, and two unidentified polar lipids. Phenotypic and chemotaxonomic data supported the affiliation of strain S7-2-11T with the genus Spirosoma. The results of physiological and biochemical tests showed the genotypic and phenotypic differentiation of the isolate from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S7-2-11T represents a novel species of the genus Spirosoma, for which the name Spirosoma pomorum sp. nov. is proposed. The type strain is S7-2-11T (= KCTC 52726T = JCM 32130T).  相似文献   

12.
13.
Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase (FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis.  相似文献   

14.
15.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

16.
17.
A Gram-stain-negative, non-motile, non-spore-forming, rodshaped, aerobic bacterial strain, designated S1-2-2-5T, was isolated from the Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-2-5T belonged to the family Cytophagaceae in phylum Bacteroidetes, and was most closely related to Hymenobacter terrae DG7AT (98.2%), Hymenobacter rubidus DG7BT (98.0%), Hymenobacter soli PB17T (97.7%), Hymenobacter daeguensis 16F3Y-2T (97.2%) and Hymenobacter saemangeumensis GSR0100T (97.0%). The G + C content of the genomic DNA of strain S1-2-2-5T was 59.4 mol%. The detection of menaquinone MK-7 as the predominant respiratory quinone, a fatty acid profile with summed feature 3 (C16:1ω7c/C16:1ω6c; 32.0%), C15:0 iso (19.0%), and C15:0 anteiso (15.0%) as the major components, and a polar lipid profile with phosphatidylethanolamine as the major component supported the affiliation of strain S1-2-2-5T to the genus Hymenobacter. The DNA-DNA relatedness between strain S1-2-2-5T and H. terrae KCTC 32554T, H. rubidus KCTC 32553T, H. soli KCTC 12607T, H. daeguensis KCTC 52537T, and H. saemangeumensis KACC 16452T were 49.5, 48.2, 34.1, 28.1, and 31.8% respectively, clearly showing that the isolate is not related to them at the species level. Strain S1-2-2-5T could be clearly differentiated from its closest neighbors on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain S1-2-2-5T represents a novel species of the genus Hymenobacter, for which the name Hymenobacter terrigena sp. nov. is proposed. The type strain is S1-2-2-5T (= KCTC 52737T = JCM 32195T).  相似文献   

18.
In this study, Lactobacillus fermentum (L. fermentum) F1 reduced cholesterol 48.87%. The strain was screened from cattle feces using an API 50 CHL system and the 16S rRNA sequence contrasting method. L. fermentum F1 showed acid and bile tolerance, and antimicrobial activity against pathogenic Escherichia coli and Staphylococcus aureus. L. fermentum F1 deconjugated 0.186 mM of free cholalic acid after it was incubated at 37°C in 0.20% sodium taurocholate (TCA) broth for 24 h. Heat-killed and resting cells of L. fermentum F1 showed small amounts of cholesterol removal (6.85 and 25.19 mg/g, respectively, of dry weight) compared with growing cells (33.21 mg/g of dry weight). The supernatant fluid of the broth contained 50.85% of the total cholesterol, while the washing buffer and cell extracts had 13.53 and 35.39%, respectively. These findings suggest that L. fermentum F1 may remove cholesterol by co-precipitating with deconjugated bile salt, assimilating with cells and by incorporation into cellular membranes. Cholesterol assimilated by cells held 72.0% of the reduced cholesterol, while 21.65% of the reduced cholesterol was coprecipitated with deconjugated bile salt and 5.89% was adsorbed into the surface of the cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号