首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of mouse atherosclerotic lesions may differ from that of humans, and mouse atherosclerotic plaques do not rupture except in some specific locations such as the brachiocephalic artery. Recently, our group was the first to observe that the amplitudes of in vivo stresses in ApoE-/- mouse aortic atherosclerotic lesions were much lower and differed from those found in a previous work performed on human lesions. In this previous preliminary work, we hypothesized that the plaque mechanical properties (MP) may in turn be responsible for such species differences. However, the limited number of human samples used in our previous comparative study was relevant but not sufficient to broadly validate such hypothesis. Therefore, in this study, we propose an original finite element strategy that reconstructs the in vivo stress/strain (IVS/S) distributions in ApoE-/- artherosclerotic vessels based on cross substitution of ApoE-/- mouse and human plaque components stiffnesses and including residual stress/strain (RS/S). Our results: (1) showed that including RS/S decreases by a factor 2 the amplitude of maximal IVS/S, and more importantly, (2) demonstrated that the MP of the ApoE-/- plaque constituents are mainly responsible for the low level-compared with human-of intraplaque stress in ApoE-/- mouse aortic atherosclerotic lesions (8.36 ± 2.63 kPa vs. 182.25 ± 55.88 kPa for human). Our study highlights that such differences in the distribution and amplitude of vessel wall stress might be one key feature for explaining for the difference in lesion stability between human coronary and mouse aortic lesions.  相似文献   

2.
Vulnerable and stable atherosclerotic plaques are heterogeneous living materials with peculiar mechanical behaviors depending on geometry, composition, loading and boundary conditions. Computational approaches have the potential to characterize the three-dimensional stress/strain distributions in patient-specific diseased arteries of different types and sclerotic morphologies and to estimate the risk of plaque rupture which is the main trigger of acute cardiovascular events. This review article attempts to summarize a few finite element (FE) studies for different vessel types, and how these studies were performed focusing on the used stress measure, inclusion of residual stress, used imaging modality and material model. In addition to histology the most used imaging modalities are described, the most common nonlinear material models and the limited number of models for plaque rupture used for such studies are provided in more detail. A critical discussion on stress measures and threshold stress values for plaque rupture used within the FE studies emphasizes the need to develop a more location and tissue-specific threshold value, and a more appropriate failure criterion. With this addition future FE studies should also consider more advanced strain-energy functions which then fit better to location and tissue-specific experimental data.  相似文献   

3.
The catastrophic mechanical rupture of an atherosclerotic plaque is the underlying cause of the majority of cardiovascular events. The infestation of vascular calcification in the plaques creates a mechanically complex tissue composite. Local stress concentrations and plaque tissue strength properties are the governing parameters required to predict plaque ruptures. Advanced imaging techniques have permitted insight into fundamental mechanisms driving the initiating inflammatory-driven vascular calcification of the diseased intima at the (sub-) micron scale and up to the macroscale. Clinical studies have potentiated the biomechanical relevance of calcification through the derivation of links between local plaque rupture and specific macrocalcification geometrical features. The clinical implications of the data presented in this review indicate that the combination of imaging, experimental testing, and computational modelling efforts are crucial to predict the rupture risk for atherosclerotic plaques. Specialised experimental tests and modelling efforts have further enhanced the knowledge base for calcified plaque tissue mechanical properties. However, capturing the temporal instability and rupture causality in the plaque fibrous caps remains elusive. Is it necessary to move our experimental efforts down in scale towards the fundamental (sub-) micron scales in order to interpret the true mechanical behaviour of calcified plaque tissue interactions that is presented on a macroscale in the clinic and to further optimally assess calcified plaques in the context of biomechanical modelling.  相似文献   

4.

Accurate estimation of mechanical properties of the different atherosclerotic plaque constituents is important in assessing plaque rupture risk. The aim of this study was to develop an experimental set-up to assess material properties of vascular tissue, while applying physiological loading and being able to capture heterogeneity. To do so, a ring-inflation experimental set-up was developed in which a transverse slice of an artery was loaded in the radial direction, while the displacement was estimated from images recorded by a high-speed video camera. The performance of the set-up was evaluated using seven rubber samples and validated with uniaxial tensile tests. For four healthy porcine carotid arteries, material properties were estimated using ultrasound strain imaging in whole-vessel-inflation experiments and compared to the properties estimated with the ring-inflation experiment. A 1D axisymmetric finite element model was used to estimate the material parameters from the measured pressures and diameters, using a neo-Hookean and Holzapfel–Gasser–Ogden material model for the rubber and porcine samples, respectively. Reproducible results were obtained with the ring-inflation experiment for both rubber and porcine samples. Similar mean stiffness values were found in the ring-inflation and tensile tests for the rubber samples as 202 kPa and 206 kPa, respectively. Comparable results were obtained in vessel-inflation experiments using ultrasound and the proposed ring-inflation experiment. This inflation set-up is suitable for the assessment of material properties of healthy vascular tissue in vitro. It could also be used as part of a method for the assessment of heterogeneous material properties, such as in atherosclerotic plaques.

  相似文献   

5.
Uniform strain hypothesis and thin-walled theory in arterial mechanics   总被引:1,自引:0,他引:1  
The authors (1987), and Chuong and Fung (1986) have shown that the strain and stress distributions in the arterial wall should be more uniform than those calculated on the basis of the conventional assumption that there is no stress over the cross-section of the arterial wall when all external force is removed (zero initial stress hypothesis). Instead of this assumption, the authors have proposed a new hypothesis that the circumferential strain uniformly distributes through the wall thickness at a physiologically normal loading, and named it 'uniform strain hypothesis'. Their results suggest the validity of the thin-walled theory in the vascular mechanics. This paper shows that if the uniform strain hypothesis is applied, the thin-walled theory can be used to accurately determine the constants included in the strain energy density function which describes the mechanical properties of the arterial wall. There were, however, significant differences in the values of the constants between the thin-walled theory and the thick-walled theory if assuming the conventional zero initial stress hypothesis.  相似文献   

6.
The traditional approaches of estimating heterogeneous properties in a soft tissue structure using optimization-based inverse methods often face difficulties because of the large number of unknowns to be simultaneously determined. This article proposes a new method for identifying the heterogeneous anisotropic nonlinear elastic properties in cerebral aneurysms. In this method, the local properties are determined directly from the pointwise stress–strain data, thus avoiding the need for simultaneously optimizing for the property values at all points/regions in the aneurysm. The stress distributions needed for a pointwise identification are computed using an inverse elastostatic method without invoking the material properties in question. This paradigm is tested numerically through simulated inflation tests on an image-based cerebral aneurysm sac. The wall tissue is modeled as an eight-ply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain energy function containing four parameters. The parameters are assumed to vary continuously in the sac. Deformed configurations generated from forward finite element analysis are taken as input to inversely establish the parameter distributions. The delineated and the assigned distributions are in excellent agreement. A forward verification is conducted by comparing the displacement solutions obtained from the delineated and the assigned material parameters at a different pressure. The deviations in nodal displacements are found to be within 0.2% in most part of the sac. The study highlights some distinct features of the proposed method, and demonstrates the feasibility of organ level identification of the distributive anisotropic nonlinear properties in cerebral aneurysms.  相似文献   

7.
The pathological changes associated with the development of atherosclerotic plaques within arterial vessels result in significant alterations to the mechanical properties of the diseased arterial wall. There are several methods available to characterise the mechanical behaviour of atherosclerotic plaque tissue, and it is the aim of this paper to review the use of uniaxial mechanical testing. In the case of atherosclerotic plaques, there are nine studies that employ uniaxial testing to characterise mechanical behaviour. A primary concern regarding this limited cohort of published studies is the wide range of testing techniques that are employed. These differing techniques have resulted in a large variance in the reported data making comparison of the mechanical behaviour of plaques from different vasculatures, and even the same vasculature, difficult and sometimes impossible. In order to address this issue, this paper proposes a more standardised protocol for uniaxial testing of diseased arterial tissue that allows for better comparisons and firmer conclusions to be drawn between studies. To develop such a protocol, this paper reviews the acquisition and storage of the tissue, the testing approaches, the post-processing techniques and the stress–strain measures employed by each of the nine studies. Future trends are also outlined to establish the role that uniaxial testing can play in the future of arterial plaque mechanical characterisation.  相似文献   

8.
Coronary bifurcations represent specific regions of the arterial tree that are susceptible to atherosclerotic lesions. While the effects of vessel compliance, curvature, pulsatile blood flow, and cardiac motion on coronary endothelial shear stress have been widely explored, the effects of myocardial contraction on arterial wall stress/strain (WS/S) and vessel stiffness distributions remain unclear. Local increase of vessel stiffness resulting from wall-strain stiffening phenomenon (a local process due to the nonlinear mechanical properties of the arterial wall) may be critical in the development of atherosclerotic lesions. Therefore, the aim of this study was to quantify WS/S and stiffness in coronary bifurcations and to investigate correlations with plaque sites. Anatomic coronary geometry and cardiac motion were generated based on both computed tomography and MRI examinations of eight patients with minimal coronary disease. Computational structural analyses using the finite element method were subsequently performed, and spatial luminal arterial wall stretch (LW(Stretch)) and stiffness (LW(Stiff)) distributions in the left main coronary bifurcations were calculated. Our results show that all plaque sites were concomitantly subject to high LW(Stretch) and high LW(Stiff), with mean amplitudes of 34.7 ± 1.6% and 442.4 ± 113.0 kPa, respectively. The mean LW(Stiff) amplitude was found slightly greater at the plaque sites on the left main coronary artery (mean value: 482.2 ± 88.1 kPa) compared with those computed on the left anterior descending and left circumflex coronary arteries (416.3 ± 61.5 and 428.7 ± 181.8 kPa, respectively). These findings suggest that local wall stiffness plays a role in the initiation of atherosclerotic lesions.  相似文献   

9.
Better understanding of the stress/strain environment in airway tissues is very important in order to avoid lung injuries for patients undergoing mechanical ventilation for treatment of respiratory problems. Airway tissue strains responsible for stressing the lung's fiber network and rupturing the lung due to compliant airways are very difficult to measure experimentally. A computational model that incorporates the heterogeneity of the airways was developed to study the effects of airway tissue material properties on strain distributions within each layer of the airway wall. The geometry and boundary conditions of the tissue strain analysis were obtained from the organ-level analysis model. Two sets of airway tissue properties (heterogeneous and homogeneous) were considered in order to estimate the strain levels induced within the tissue. The simulation results showed that the homogeneous model overestimated the maximum strain in the mucosa layer and underestimated the maximum strain in the smooth muscle and cartilage layers. The results of strain levels obtained from the tissue analysis are very important because these strains at the cellular-level can create inflammatory responses, thus damaging the airway tissues.  相似文献   

10.
The stress and strain in the vessel wall are important determinants of vascular physiology and pathophysiology. Vessels are constrained radially by the surrounding tissue. The hypothesis in this work is that the surrounding tissue takes up a considerable portion of the intravascular pressure and significantly reduces the wall strain and stress. Ten swine of either sex were used to test this hypothesis. An impedance catheter was inserted into the carotid or femoral artery, and after mechanical preconditioning pressure-cross-sectional area relations were obtained with the surrounding tissue intact and dissected away (untethered), respectively. The radial constraint of the surrounding tissue was quantified as an effective perivascular pressure on the outer surface of the vessel, which was estimated as 50% or more of the intravascular pressure. For carotid arteries at pressure of 100 mmHg, the circumferential wall stretch ratio in the intact state was approximately 20% lower than in the untethered state and the average circumferential stress was reduced by approximately 70%. For femoral arteries, the reductions were approximately 15% and 70%, respectively. These experimental data support the proposed hypothesis and suggest that in vitro and in vivo measurements of the mechanical properties of vessels must be interpreted with consideration of the constraint of the surrounding tissue.  相似文献   

11.
A fundamental understanding of the mechanical properties of the extracellular matrix (ECM) is critically important to quantify the amount of macroscopic stress and/or strain transmitted to the cellular level of vascular tissue. Structural constitutive models integrate histological and mechanical information, and hence, allocate stress and strain to the different microstructural components of the vascular wall. The present work proposes a novel multi-scale structural constitutive model of passive vascular tissue, where collagen fibers are assembled by proteoglycan (PG) cross-linked collagen fibrils and reinforce an otherwise isotropic matrix material. Multiplicative kinematics account for the straightening and stretching of collagen fibrils, and an orientation density function captures the spatial organization of collagen fibers in the tissue. Mechanical and structural assumptions at the collagen fibril level define a piece-wise analytical stress-stretch response of collagen fibers, which in turn is integrated over the unit sphere to constitute the tissue's macroscopic mechanical properties. The proposed model displays the salient macroscopic features of vascular tissue, and employs the material and structural parameters of clear physical meaning. Likewise, the constitutive concept renders a highly efficient multi-scale structural approach that allows for the numerical analysis at the organ level. Model parameters were estimated from isotropic mean-population data of the normal and aneurysmatic aortic wall and used to predict in-vivo stress states of patient-specific vascular geometries, thought to demonstrate the robustness of the particular Finite Element (FE) implementation. The collagen fibril level of the multi-scale constitutive formulation provided an interface to integrate vascular wall biology and to account for collagen turnover.  相似文献   

12.
13.
Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. However, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone.  相似文献   

14.
The present study illustrates a possible methodology to investigate drug elution from an expanded coronary stent. Models based on finite element method have been built including the presence of the atherosclerotic plaque, the artery and the coronary stent. These models take into account the mechanical effects of the stent expansion as well as the effect of drug transport from the expanded stent into the arterial wall. Results allow to quantify the stress field in the vascular wall, the tissue prolapse within the stent struts, as well as the drug concentration at any location and time inside the arterial wall, together with several related quantities as the drug dose and the drug residence times.  相似文献   

15.
The present study illustrates a possible methodology to investigate drug elution from an expanded coronary stent. Models based on finite element method have been built including the presence of the atherosclerotic plaque, the artery and the coronary stent. These models take into account the mechanical effects of the stent expansion as well as the effect of drug transport from the expanded stent into the arterial wall. Results allow to quantify the stress field in the vascular wall, the tissue prolapse within the stent struts, as well as the drug concentration at any location and time inside the arterial wall, together with several related quantities as the drug dose and the drug residence times.  相似文献   

16.
It was hypothesized that damage to bone tissue would be most detrimental to the structural integrity of the vertebral body if it occurred in regions with high strain energy density, and not necessarily in regions of high or low trabecular bone apparent density, or in a particular anatomic location. The reduction in stiffness due to localized damage was computed in 16 finite element models of 10-mm-thick human vertebral sections. Statistical analyses were performed to determine which characteristic at the damage location--strain energy density, apparent density, or anatomic location--best predicted the corresponding stiffness reduction. There was a strong positive correlation between regional strain energy density and structural stiffness reduction in all 16 vertebral sections for damage in the trabecular centrum (p < 0.05, r2 = 0.43-0.93). By contrast, regional apparent density showed a significant negative correlation to stiffness reduction in only four of the sixteen bones (p < 0.05, r2 = 0.47-0.58). While damage in different anatomic locations did lead to different reductions in stiffness (p < 0.0001, ANOVA), no single location was consistently the most critical location for damage. Thus, knowledge of the characteristics of bone that determine strain energy density distributions can provide an understanding of how damage reduces whole bone mechanical properties. A patient-specific finite element model displaying a map of strain energy density can help optimize surgical planning and reinforcement of bone in individuals with high fracture risk.  相似文献   

17.
18.
In this paper, the viscoelastic mechanical properties of vaginal tissue are investigated. Using previous results of the authors on the mechanical properties of biological soft tissues and newly experimental data from uniaxial tension tests, a new model for the viscoelastic mechanical properties of the human vaginal tissue is proposed. The structural model seems to be sufficiently accurate to guarantee its application to prediction of reliable stress distributions, and is suitable for finite element computations. The obtained results may be helpful in the design of surgical procedures with autologous tissue or prostheses.  相似文献   

19.
Quantification of the mechanical behavior of soft tissues is challenging due to their anisotropic, heterogeneous, and nonlinear nature. We present a method for the ‘computational dissection’ of a tissue, by which we mean the use of computational tools both to identify and to analyze regions within a tissue sample that have different mechanical properties. The approach employs an inverse technique applied to a series of planar biaxial experimental protocols. The aggregated data from multiple protocols provide the basis for (1) segmentation of the tissue into regions of similar properties, (2) linear analysis for the small-strain behavior, assuming uniform, linear, anisotropic behavior within each region, (3) subsequent nonlinear analysis following each individual experimental protocol path and using local linear properties, and (4) construction of a strain energy data set W(E) at every point in the material by integrating the differential stress–strain functions along each strain path. The approach has been applied to simulated data and captures not only the general nonlinear behavior but also the regional differences introduced into the simulated tissue sample.  相似文献   

20.
Recent experimental and computational studies have shown that transmurally heterogeneous material properties through the arterial wall are critical to understanding the heterogeneous expressions of constituent degrading molecules. Given that expression of such molecules is thought to be intimately linked to local magnitudes of stress, modelling the transmural stress distribution is critical to understanding arterial adaption during disease. The aim of this study was to develop an arterial growth and remodelling framework that can incorporate both transmurally heterogeneous constituent distributions and residual stresses, into a 3-D finite element model. As an illustrative example, we model the development of a fusiform aneurysm and investigate the effects of elastinous and collagenous heterogeneities on the stress distribution during evolution. It is observed that the adaptive processes of growth and remodelling exhibit transmural variations. For physiological heterogeneous constituent distributions, a stress peak appears in the media towards the intima, and a stress plateau occurs towards the adventitia. These features can be primarily attributed to the underlying heterogeneity of elastinous constituents. During arterial adaption, the collagen strain is regulated to remain in its homoeostatic level; consequently, the partial stress of collagen has less influence on the total stress than the elastin. However, following significant elastin degradation, collagen plays the dominant role for the transmural stress profile and a marked stress peak occurs towards the adventitia. We conclude that to improve our understanding of the arterial adaption and the aetiology of arterial disease, there is a need to: quantify transmural constituent distributions during histopathological examinations, understand and model the role of the evolving transmural stress distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号