首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of N-{2-[4-(1H-benzimidazole-2-yl)phenoxy]ethyl}substituted amine derivatives were designed to assess cholinesterase inhibitor activities. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor activities were evaluated in vitro by using Ellman’s method. It was discovered that most of the compounds displayed AChE and/or BuChE inhibitor activity and few compounds were selective against AChE/BuChE. Compound 3c and 3e were the most active compounds in the series against eeAChE and hAChE, respectively. Molecular docking studies and molecular dynamics simulations were also carried out.  相似文献   

2.
A novel series of N-benzylpyridinium moiety linked to arylisoxazole ring were designed, synthesized, and evaluated for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Synthesized compounds were classified into two series of 5a-i and 5j-q considering the position of positively charged nitrogen of pyridinium moiety (3- or 4- position, respectively) connected to isoxazole carboxamide group. Among the synthesized compounds, compound 5n from the second series of compounds possessing 2,4-dichloroaryl group connected to isoxazole ring was found to be the most potent AChE inhibitor (IC50 = 5.96 µM) and compound 5j also from the same series of compounds containing phenyl group connected to isoxazole ring demonstrated the most promising inhibitory activity against BChE (IC50 = 0.32 µM). Also, kinetic study demonstrated competitive inhibition mode for both AChE and BChE inhibitory activity. Docking study was also performed for those compounds and desired interactions with those active site amino acid residues were confirmed through hydrogen bonding as well as π-π and π-anion interactions. In addition, the most potent compounds were tested against BACE1 and their neuroprotectivity on Aβ-treated neurotoxicity in PC12 cells which depicted negligible activity. It should be noted that most of the synthesized compounds from both categories 5a-i and 5j-q showed a significant selectivity toward BChE. However, series 5j-q were more active toward AChE than series 5a-i.  相似文献   

3.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs.  相似文献   

4.
A new series of structurally rigid donepezil analogues was designed, synthesized and evaluated as potential multi-target-directed ligands (MTDLs) against neurodegenerative diseases. The investigated compounds 1013 displayed dual AChE and BACE-1 inhibitory activities in comparison to donepezil, the FDA-approved drug. The hybrid compound 13 bearing 2-aminoquinoline scaffold exhibited potent AChE inhibition (IC50 value of 14.7?nM) and BACE-1 inhibition (IC50 value of 13.1?nM). Molecular modeling studies were employed to reveal potential dual binding mode of 13 to AChE and BACE-1. The effect of the investigated compounds on the viability of SH-SY5Y neuroblastoma cells and their ability to cross the blood-brain barrier (BBB) in PAMPA-BBB assay were further studied.  相似文献   

5.
A series of 3,4-dihydroquinazoline derivatives consisting of the selected compounds from our chemical library on the diversity basis and the new synthetic compounds were in vitro tested for their inhibitory activities for both acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) enzymes. It was discovered that most of the compounds displayed weak AChE and strong BuChE inhibitory activities. In particular, compound 8b and 8d were the most active compounds in the series against BChE with IC50 values of 45 nM and 62 nM, as well as 146- and 161-fold higher affinity to BChE, respectively. To understand the excellent activity of these compounds, molecular docking simulations were performed to get better insights into the mechanism of binding of 3,4-dihydroquinazoline derivatives. As expected, compound 8b and 8d bind to both catalytic anionic site (CAS) and peripheral site (PS) of BChE with better interaction energy values than AChE, in agreement with our experimental data. Furthermore, the non-competitive/mixed-type inhibitions of both compounds further confirmed their dual binding nature in kinetic studies.  相似文献   

6.
A new series of benzyl pyridinium-2,4-dioxochroman derivatives 7a-o was synthesized and evaluated as new anti-Alzheimer agents. Among the synthesized compounds, the compounds 7f and 7i exhibited the most potent anti-AChE and anti-BuChE activities, respectively. The kinetic study of the compound 7f revealed that this compound inhibited AChE in a mixed-type inhibition mode. Furthermore, the docking study of the compounds 7f and 7i showed that these compounds bound to both the catalytic site (CS) and peripheral anionic site (PAS) of AChE and BuChE, respectively. The compound 7f also exhibited a greater self-induced Aβ peptide aggregation inhibitory activity in compare to donepezil. Furthermore, the neuroprotective activity of this compound at 20 μM was comparable to that of the standard neuroprotective agent (quercetin).  相似文献   

7.
Recently, inhibition of carbonic anhydrase (hCA) and acetylcholinesterase (AChE) have appeared as a promising approach for pharmacological intervention in a variety of disorders such as glaucoma, epilepsy, obesity, cancer, and Alzheimer’s disease. Keeping this in mind, N,N′-bis[(1-aryl-3-heteroaryl)propylidene]hydrazine dihydrochlorides, N1-N11, P1, P4-P8, and R1-R6, were synthesized to investigate their inhibitory activity against hCA I, hCA II, and AChE enzymes. All compounds in N, P, and R-series inhibited hCAs (I and II) and AChE more efficiently than the reference compounds acetazolamide (AZA), and tacrine. According to the activity results, the most effective inhibitory compounds were in R-series with the Ki values of 203 ± 55–473 ± 67 nM and 200 ± 34–419 ± 94 nM on hCA I, and hCA II, respectively. N,N′-Bis[1-(4-fluorophenyl)-3-(morpholine-4-yl)propylidene]hydrazine dihydrochlorides, N8, in N-series, N,N′-Bis[1-(4-hydroxyphenyl)-3-(piperidine-1-yl)propylidene]hydrazine dihydrochlorides, P4, in P-series, and N,N′-bis[1-(4-chlorophenyl)-3-(pyrrolidine-1-yl)propylidene]hydrazine dihydrochlorides, R5, in R-series were the most powerful compounds against hCA I with the Ki values of 438 ± 65 nM, 344 ± 64 nM, and 203 ± 55 nM, respectively. Similarly, N8, P4, and R5 efficiently inhibited hCA II isoenzyme with the Ki values of 405 ± 60 nM, 327 ± 80 nM, and 200 ± 34 nM, respectively. On the other hand, P-series compounds had notable inhibitory effect against AChE than the reference compound tacrine and the Ki values were between 66 ± 20 nM and 128 ± 36 nM. N,N′-Bis[1-(4-fluorophenyl)-3-(piperidine-1-yl)propylidene]hydrazine dihydrochlorides, P7, was the most potent compound on AChE with the Ki value of 66 ± 20 nM. The other most promising compounds, N,N′-bis[1-(4-hydroxyphenyl)-3-(morpholine-4-yl)propylidene]hydrazine dihydrochlorides, N4 in N-series and N,N′-bis[1-(4-hydroxyphenyl)-3-(pyrrolidine-1-yl)propylidene]hydrazine dihydrochlorides, R4 in R-series were againts AChE with the Ki values of 119 ± 20 nM, 88 ± 14 nM, respectively.  相似文献   

8.
A series of novel 2-aminobenzimidazole derivatives were synthesized under microwave irradiation. Their biological activities were evaluated on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A number of the 2-aminobenzimidazole derivatives showed good inhibitory activities to AChE and BuChE. Among them, compounds 9, 12 and 13 were found to be >25-fold more selective for BuChE than AChE. No evidence of cytotoxicity was observed by MTT assay in PC12 cells or HepG2 cells exposed to 100 μM of the compounds. Molecular modeling studies indicate that the benzimidazole moiety of compounds 9, 12 and 13 forms a face-to-face π–π stacking interaction in a ‘sandwich’ form with the indole ring of Trp82 (4.09 Å) in the active gorge, and compounds 12 and 13 form a hydrogen bond with His438 at the catalytic site of BuChE. In addition, compounds 12 and 13 fit well into the hydrophobic pocket formed by Ala328, Trp430 and Tyr332 of BuChE. Our data suggest the 2-aminobenzimidazole drugs as promising new selective inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.  相似文献   

9.
A series of novel tacrine-isatin Schiff base hybrid derivatives (7a-p) were designed, synthesized and evaluated as multi-target candidates against Alzheimer’s disease (AD). The biological assays indicated that most of these compounds displayed potent inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and specific selectivity for AChE over BuChE. It was also found that they act as excellent metal chelators. The compounds 7k and 7m were found to be good inhibitors of AChE-induced amyloid-beta (Aβ) aggregation. Most of the compounds inhibited AChE with the IC50 values, ranging from 0.42 nM to 79.66 nM. Amongst them, 7k, 7m and 7p, all with a 6 carbon linker between tacrine and isatin Schiff base exhibited the strongest inhibitory activity against AChE with IC50 values of 0.42 nM, 0.62 nM and 0.95 nM, respectively. They were 92-, 62- and 41-fold more active than tacrine (IC50 = 38.72 nM) toward AChE. Most of the compounds also showed a potent BuChE inhibition among which 7d with an IC50 value of 0.11 nM for BuChE is the most potent one (56-fold more potent than that of tacrine (IC50 = 6.21 nM)). In addition, most compounds exhibited the highest metal chelating property. Kinetic and molecular modeling studies revealed that 7k is a mixed-type inhibitor, capable of binding to catalytic and peripheral site of AChE. Our findings make this hybrid scaffold an excellent candidate to modify current drugs in treating Alzheimer’s disease (AD).  相似文献   

10.
A series of new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring were designed, synthesized and evaluated for their ability to inhibit both cholinesterase enzymes. In addition, a series of carboxamide and propanamide derivatives bearing biphenyl instead of phenylpyridazine were also synthesized to examine the inhibitory effect of pyridazine moiety on both cholinesterase enzymes. The inhibitory activity results revealed that compounds 5b, 5f, 5h, 5j, 5l pyridazine-3-carboxamide derivative, exhibited selective acetylcholinesterase (AChE) inhibition with IC50 values ranging from 0.11 to 2.69 µM. Among them, compound 5h was the most active one (IC50 = 0.11 µM) without cytotoxic effect at its effective concentration against AChE. Additionally, pyridazine-3-carboxamide derivative 5d (IC50 for AChE = 0.16 µM and IC50 for BChE = 9.80 µM) and biphenyl-4-carboxamide derivative 6d (IC50 for AChE = 0.59 µM and IC50 for BChE = 1.48 µM) displayed dual cholinesterase inhibitory activity. Besides, active compounds were also tested for their ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated by using Molinspiration Program as well. The Lineweaver-Burk plot and docking study showed that compound 5 h targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.  相似文献   

11.
A novel series of chalcone derivatives (4a8d) were designed, synthesized, and evaluated for the inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The log P values of the compounds were shown to range from 1.49 to 2.19, which suggested that they were possible to pass blood brain barriers in vivo. The most promising compound 4a (IC50: 4.68 μmol/L) was 2-fold more potent than Rivastigmine against AChE (IC50: 10.54 μmol/L) and showed a high selectivity for AChE over BuChE (ratio: 4.35). Enzyme kinetic study suggested that the inhibition mechanism of compound 4a was a mixed-type inhibition. Meanwhile, the result of molecular docking showed its potent inhibition of AChE and high selectivity for AChE over BuChE.  相似文献   

12.
A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1–42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1–42 aggregation. The compound 3o exhibited best AChE (IC50 = 0.037 μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.  相似文献   

13.
Alzheimer’s disease (AD) is a neurodegenerative disorder affecting 35 million people worldwide. A common strategy to improve the well-being of AD patients consists on the inhibition of acetylcholinesterase with the concomitant increase of the neurotransmitter acetylcholine at cholinergic synapses. Two series of unreported N-benzylpiperidines 5(ah) and thiazolopyrimidines 9(aq) molecules were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) inhibitory activities. Among the newly synthesized compounds, 5h, 9h, 9j, and 9p displayed higher AChE enzyme inhibitory activities than the standard drug, galantamine, with IC50 values of 0.83, 0.98, and 0.73 μM, respectively. Cytotoxicity studies of 5h, 9h, 9j, 9n and 9p on human neuroblastoma cells SH-SY5Y, showed no toxicity up to 40 μM concentration. Molecular docking simulations of the active compounds 5h and 9p disclosed the crucial role of π-π-stacking in their binding interaction to the active site AChE enzyme. The presented compounds have potential as AChE inhibitors and potential AD drugs.  相似文献   

14.
This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer’s disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 μM and 5.22 μM respectively against AChE; and, 6.98 μM and 5.29 μM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for β-amyloid (Aβ) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.  相似文献   

15.
To explore new scaffolds for the treat of Alzheimer’s disease appears to be an inspiring goal. In this context, a series of varyingly substituted flavonols and 4-thioflavonols have been designed and synthesized efficiently. All the newly synthesized compounds were characterized unambiguously by common spectroscopic techniques (IR, 1H-, 13C NMR) and mass spectrometry (EI-MS). All the derivatives (124) were evaluated in vitro for their inhibitory potential against cholinesterase enzymes. The results exhibited that these derivatives were potent selective inhibitors of acetylcholinesterase (AChE), except the compound 11 which was selective inhibitor of butyrylcholinesterase (BChE), with varying degree of IC50 values. Remarkably, the compounds 20 and 23 have been found the most potent almost dual inhibitors of AChE and BChE amongst the series with IC50 values even less than the standard drug. The experimental results in silico were further validated by molecular docking studies in order to find their binding modes with the active pockets of AChE and BChE enzymes.  相似文献   

16.
In present study, a novel series of fluorine containing 4-(2-pyrimidinylamino)benzamide analogues were designed and synthesized. The hedgehog (Hh) signaling inhibitory activities for these compounds were evaluated by a luciferase reporter method. The preliminary SAR was discussed and many compounds showed potent Hh signaling inhibitory activities. Compound 15h displayed the most potent inhibitory activity, with an IC50 of 0.050 nM. This paper finds the introduction of fluorine to the 4-(2-pyrimidinylamino)benzamide scaffold can lead to a novel series of potent Hh signaling pathway inhibitors.  相似文献   

17.
A series of 4-dimethylamine flavonoid derivatives 5a5r were designed, synthesized and evaluated as potential multi-functional anti-Alzheimer agents. The results showed that most of the synthesized compounds exhibited high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity at the micromolar range (IC50, 1.83–33.20 μM for AChE and 0.82–11.45 μM for BChE). A Lineweaver–Burk plot indicated a mixed-type inhibition for compound 5j with AChE, and molecular modeling study showed that 5j targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, the derivatives showed potent self-induced Aβ aggregation inhibitory activity at 20 μM with percentage from 25% to 48%. In addition, some compounds (5j5q) showed potent oxygen radical absorbance capacity (ORAC) ranging from 1.5- to 2.6-fold of the Trolox value. These compounds should be further investigated as multi-potent agents for the treatment of Alzheimer’s disease.  相似文献   

18.
A series of hybrids containing tacrine linked to carbohydrate-based moieties, such as d-xylose, d-ribose, and d-galactose derivatives, were synthesized by the nucleophilic substitution between 9-aminoalkylamino-1,2,3,4-tetrahydroacridines and the corresponding sugar-based tosylates. All compounds were found to be potent inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the nanomolar IC50 scale. Most of the d-xylose derivatives (6a-e) were selective for AChE and the compound 6e (IC50?=?2.2?nM for AChE and 4.93?nM for BuChE) was the most active compound for both enzymes. The d-galactose derivative 8a was the most selective for AChE exhibiting an IC50 ratio of 7.6 for AChE over BuChE. Only two compounds showed a preference for BuChE, namely 7a (d-ribose derivative) and 6b (d-xylose derivative). Molecular docking studies indicated that the inhibitors are capable of interacting with the entire binding cavity and the main contribution of the linker is to enable the most favorable positioning of the two moieties with CAS, PAS, and hydrophobic pocket to provide optimal interactions with the binding cavity. This finding is reinforced by the fact that there is no linear correlation between the linker size and the observed binding affinities. The majority of the new hybrids synthesized in this work do not violate the Lipinski's rule-of-five according to FAF-Drugs4, and do not demonstrated predicted hepatotoxicity according ProTox-II.  相似文献   

19.
Alzheimer’s disease (AD) is a multifactorial disorder with several target proteins contributing to its etiology. In search for multifunctional anti-AD drug candidates, taking into account that the acetylcholinesterase (AChE) and beta-amyloid (Aβ) aggregation are particularly important targets for inhibition, the tacrine and benzothiazole (BTA) moieties were conjugated with suitable linkers in a novel series of hybrids. The designed compounds (7a7e) were synthesized and in vitro as well as in ex vivo evaluated for their capacity for the inhibition of acetylcholinesterase (AChE) and Aβ self-induced aggregation, and also for the protection of neuronal cells death (SHSY-5Y cells, AD and MCI cybrids). All the tacrine–BTA hybrids displayed high in vitro activities, namely with IC50 values in the low micromolar to sub-micromolar concentration range towards the inhibition of AChE, and high percentages of inhibition of the self-induced Aβ aggregation. Among them, compound 7a, with the shortest linker, presented the best inhibitory activity of AChE (IC50 = 0.34 μM), while the highest activity as anti-Aβ42 self-aggregation, was evidenced for compound 7b (61.3%, at 50 μM. The docking studies demonstrated that all compounds are able to interact with both catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Our results show that compounds 7d and 7e improved cell viability in cells treated with Aβ42 peptide. Overall, these multi-targeted hybrid compounds appear as promising lead compounds for the treatment of Alzheimer’s disease.  相似文献   

20.
A series of compounds following the lead compounds including deferasirox and tacrine were designed, synthesized and evaluated as multifunctional agents against Alzheimer’s disease (AD). In vitro studies showed that most synthesized compounds exhibited good multifunctional activities in inhibiting acetylcholinesterase (bAChE), and chelating metal ions. Especially, compound TDe demonstrated significant metal chelating property, a moderate acetylcholinesterase (AChE) inhibitory activity and an antioxidant activity. Results from the molecular modeling indicated that TD compounds were mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of TcAChE. Moreover, TDe showed a low cytotoxicity but a good protective activity against the injury caused by H2O2. These results suggest that TD compounds might be considered as attractive multi-target cholinesterase inhibitor and will play important roles in the treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号