首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV replicon whose encoded NS5A protein exhibited differential abilities to bind and inhibit protein kinase R (PKR). Metabolic labeling experiments revealed that IFN had little overall effect upon HCV protein stability or polyprotein processing but specifically blocked translation of the HCV RNA, such that the replication of both viral quasispecies was suppressed by IFN treatment of the Huh7 host cells. However, within cells expressing an NS5A variant that inhibited PKR, we observed a reduced level of eukaryotic initiation factor 2 alpha subunit (eIF2alpha) phosphorylation and a concomitant increase in HCV protein synthetic rates, enhancement of viral RNA replication, and a partial rescue of viral internal ribosome entry site (IRES) function from IFN suppression. Assessment of the ribosome distribution of the HCV replicon RNA demonstrated that the NS5A-mediated block in eIF2alpha phosphorylation resulted in enhanced recruitment of the HCV RNA into polyribosome complexes in vivo but only partially rescued the RNA from polyribosome dissociation induced by IFN treatment. Examination of cellular proteins associated with HCV-translation complexes in IFN-treated cells identified the P56 protein as an eIF3-associated factor that fractionated with the initiator ribosome-HCV RNA complex. Importantly, we found that P56 could independently suppress HCV IRES function both in vitro and in vivo, but a mutant P56 that was unable to bind eIF3 had no suppressive action. We conclude that IFN blocks HCV replication through translational control programs involving PKR and P56 to, respectively, target eIF2- and eIF3-dependent steps in the viral RNA translation initiation process.  相似文献   

2.
《Autophagy》2013,9(8):1224-1225
Autophagy is a fundamental process for anti-viral defense. Not surprisingly, viruses have developed strategies to subvert or use autophagy for their own benefit. In cell culture, autophagy proteins are proviral factors that favor initiation of hepatitis C virus (HCV) infection. Autophagy proteins are required for translation of incoming viral RNA. We propose that autophagy factors might support the delivery of incoming RNA to the translation apparatus and/or the recruitment of cellular factors required to initiate HCV translation.  相似文献   

3.
The hepatitis C virus (HCV) encodes a large polyprotein; therefore, all viral proteins are produced in equimolar amounts regardless of their function. The aim of our study was to determine the ratio of nonstructural proteins to RNA that is required for HCV RNA replication. We analyzed Huh-7 cells harboring full-length HCV genomes or subgenomic replicons and found in all cases a >1,000-fold excess of HCV proteins over positive- and negative-strand RNA. To examine whether all nonstructural protein copies are involved in RNA synthesis, we isolated active HCV replication complexes from replicon cells and examined them for their content of viral RNA and proteins before and after treatment with protease and/or nuclease. In vitro replicase activity, as well as almost the entire negative- and positive-strand RNA, was resistant to nuclease treatment, whereas <5% of the nonstructural proteins were protected from protease digest but accounted for the full in vitro replicase activity. In consequence, only a minor fraction of the HCV nonstructural proteins was actively involved in RNA synthesis at a given time point but, due to the high amounts present in replicon cells, still representing a huge excess compared to the viral RNA. Based on the comparison of nuclease-resistant viral RNA to protease-resistant viral proteins, we estimate that an active HCV replicase complex consists of one negative-strand RNA, two to ten positive-strand RNAs, and several hundred nonstructural protein copies, which might be required as structural components of the vesicular compartments that are the site of HCV replication.  相似文献   

4.
Hepatitis C viral RNA synthesis has been demonstrated to occur on a lipid raft membrane structure. Lipid raft membrane fraction purified by membrane flotation analysis was observed using transmission electron microscopy and atomic force microscopy. Particles around 0.7 um in size were found in lipid raft membrane fraction purified from hepatitis C virus (HCV) replicon but not their parental HuH7 cells. HCV NS5A protein was associated with these specialized particles. After several cycles of freezing-thawing, these particles would fuse into larger sizes up to 10 um. Knockdown of seven proteins associated with lipid raft (VAPA, COPG, RAB18, COMT, CDC42, DPP4, and KDELR2) of HCV replicon cells reduced the observed number of these particles and suppressed the HCV replication. Results in this study indicated that HCV replication complexes with associated lipid raft membrane form distinct particle structures of around 0.7 um as observed from transmission electron microscopy and atomic force microscopy.  相似文献   

5.
Gao L  Aizaki H  He JW  Lai MM 《Journal of virology》2004,78(7):3480-3488
The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.  相似文献   

6.
7.
Reactive species and perturbation of the redox balance have been implicated in the pathogenesis of many viral diseases, including hepatitis C. Previously, we made a surprising discovery that concentrations of H(2)O(2) that are nontoxic to host cells disrupted the hepatitis C virus (HCV) replication complex (RC) in Huh7 human hepatoma cells in a manner that suggested signaling. Here, we show that H(2)O(2) and interferon-gamma have comparable effects on the HCV subgenomic and genomic RNA replication in Huh7 cells. H(2)O(2) induced a gradual rise in the intracellular calcium concentration ([Ca(2+)](i)). Both rapid and sustained suppression of HCV RNA replication by H(2)O(2) depended on this calcium elevation. The peroxide-induced [Ca(2+)](i) elevation was independent of extracellular calcium and derived, at least in part, from the endoplasmic reticulum. Likewise, the suppression of the HCV RC by H(2)O(2) was independent of extracellular calcium but required an intracellular calcium source. Other agents that elevated [Ca(2+)](i) could also suppress the HCV RC, suggesting that calcium elevation might be sufficient to suppress HCV RNA replication. In conclusion, oxidants may modulate the HCV RC through calcium. Effects on the infectivity and the morphogenesis of HCV remain to be determined. These findings suggest possible regulatory roles for redox and calcium signaling during viral infections.  相似文献   

8.
9.
A trans-packaging system for hepatitis C virus (HCV) subgenomic replicon RNAs was developed. HCV subgenomic replicon was efficiently encapsidated by the HCV structural proteins that were stably expressed in trans under the control of a mammalian promoter. Infectious HCV-like particles (HCV-LPs), established a single-round infection, were produced and released into culture medium in titers of up to 103 focus forming units/ml. Expression of NS2 protein with structural proteins (core, E1, E2, and p7) was shown to be critical for the infectivity of HCV-LPs. Anti-CD81 treatment decreased the number of infected cells, suggesting that HCV-LPs infected cells in a CD81-dependent manner. The packaging cell line should be useful both for the production of single-round infectious HCV-LPs to elucidate the mechanisms of HCV assembly, particle formation and infection to host cells, and for the development of HCV replicon-based vaccines.  相似文献   

10.
Elazar M  Liu P  Rice CM  Glenn JS 《Journal of virology》2004,78(20):11393-11400
Like other positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its RNA in association with host cell cytoplasmic membranes. Because of its association with such membranes, NS4B, one of the virus's nonstructural proteins, may play an important role in this process, although the mechanistic details are not well understood. We identified a putative N-terminal amphipathic helix (AH) in NS4B that mediates membrane association. Introduction of site-directed mutations designed to disrupt the hydrophobic face of the AH abolishes the AH's ability to mediate membrane association. An AH in NS4B is conserved across HCV isolates. Completely disrupting the amphipathic nature of NS4B's N-terminal helix abolished HCV RNA replication, whereas partial disruption resulted in an intermediate level of replication. Finally, immunofluorescence studies revealed that HCV replication complex components were mislocalized in the AH-disrupted mutant. These results identify a key membrane-targeting domain which can form the basis for developing novel antiviral strategies.  相似文献   

11.
Chronic hepatitis C virus (HCV) infection is a significant worldwide health problem with limited therapeutic options. A number of novel, small molecular inhibitors of HCV replication are now entering early clinical trials in humans. Resistance to small molecular inhibitors is likely to be a significant hurdle to their use in patients. A systematic assessment of combinations of interferon and/or novel anti-hepatitis C virus agents from several different mechanistic classes was performed in vitro. Combinations of inhibitors with different mechanisms of action consistently demonstrated more synergy than did compounds with similar mechanisms of action. These results suggest that combinations of inhibitors with different mechanisms of action should be prioritized for assessment in clinical trials for chronic hepatitis C virus infection.  相似文献   

12.
Novel acyclic triazole nucleosides with various ethynyl moieties appended on the triazole nucleobase were synthesized efficiently using a convenient one-step Sonogashira reaction in aqueous solution and under microwave irradiation. One of the compounds, 1f, inhibited HCV subgenomic replication with a 50% effective concentration (EC(50)) of 22 microg/ml and did not inhibit proliferation of the host cell at a concentration of 50 microg/ml. A preliminary SAR study suggests that the appended phenyl ring as well as the rigid triple bond linker contributes importantly to the anti-HCV activity.  相似文献   

13.
Outbreaks of spring viraemia of carp virus (SVCV) in several carp species and other cultivated fish can cause significant mortality and jeopardize the billion‐dollar worldwide fish industry. Spring viraemia of carp virus, also known as Rhabdovirus carpio, is a bullet‐shaped RNA virus that enters and amplifies in gill epithelium and later spreads to internal organs. Young fish under stressed conditions (spring cold water, etc.) are more vulnerable to SVCV‐induced lethality because of their lack of a mature immune system. Currently, the host response of SVCV remains largely unknown. Here, we observed that autophagy is activated in SVCV‐infected epithelioma papulosum cyprini (EPC) cells. We demonstrated that the SVCV glycoprotein, rather than viral replication, activates the autophagy pathway. In addition, SVCV utilized the autophagy pathway to facilitate its own genomic RNA replication and to enhance its titres in the supernatants. Autophagy promoted the survival of SVCV‐infected cells by eliminating damaged mitochondrial DNA generated during viral infection. We further showed that SVCV induces autophagy in EPC cells through the ERK/mTOR signalling pathway. Our results reveal a connection between autophagy and SVCV replication and propose autophagy suppression as a novel means to restrict SVCV viral replication.  相似文献   

14.
BHK-21 cells, infected with Semliki Forest virus, were treated with cycloheximide to stop further synthesis but not intracellular transport of the viral membrane proteins. These proteins were then localized in thin, frozen sections using specific antibodies labelled indirectly with ferritin or gold. Quantitation of the labelling on micrographs showed the movement of spike proteins from the rough endoplasmic reticulum and through the Golgi stacks. The spike proteins spent about 15 minutes in each of these intracellular organelles and their final destination was the plasma membrane. Parallel biochemical studies showed that most of the simple oligosaccharides on the viral spike proteins were modified to the complex form at the same time as these membrane proteins were passing through the Golgi stacks. Cell fractionation studies revealed the same pattern; the proteins passed from the rough endoplasmic reticulum to the plasma membrane via a vesicle fraction isolated according to its content of galactosyl transferase. Independent evidence that this fraction was derived at least in part from the Golgi complex in BHK cells was obtained by showing that it reacted specifically with an antibody raised to rat liver Golgi membranes.  相似文献   

15.
The molecular mechanism of hepatitis C virus(HCV) RNA replication is still unknown. Recently, a cell culture system in which the HCV subgenomic replicon is efficiently replicated and maintained for a long period in Huh-7 cells has been established. Taking advantage of this replicon system, we detected the activity to synthesize the subgenomic RNA in the digitonin-permeabilized replicon cells. To elucidate how and where this viral RNA replicates in the cells, we monitored the activity for HCV RNA synthesis in the permeabilized replicon cells under several conditions. We obtained results suggesting that HCV replication complexes functioning to synthesize the replicon RNA are protected from access of nuclease and proteinase by possible cellular lipid membranes. We also found that a large part of the replicon RNA, including newly synthesized RNA, was present in such a membranous structure but a large part of each NS protein was not. A small part of each NS protein that was resistant to the proteinase action was shown to contribute sufficiently to the synthesis of HCV subgenomic RNA in the permeabilized replicon cells. These results suggested that a major subcellular site of HCV genome replication is probably compartmentalized by lipid membranes and that only a part of each NS protein forms the active replication complex in the replicon cells.  相似文献   

16.
17.
Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells.  相似文献   

18.
ABSTRACT: BACKGROUND: Persistent infection with hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Standard therapy consists of a combination of interferon-alpha and ribavirin, but many patients respond poorly, especially those infected with HCV genotypes 1 and 4. Furthermore, standard therapy is associated with severe side-effects. Thus, alternative therapeutic approaches against HCV are needed. FINDINGS: Here, we studied the effect of a new class of antiviral agents against HCV, short, partially double-stranded oligodeoxynucleotides (ODNs), on viral replication. We targeted the 5' nontranslated region (5' NTR) of the HCV genome that has previously been shown as effective target for small interfering RNAs (siRNAs) in vitro. One of the investigated ODNs, ODN 320, significantly and efficiently reduced replication of HCV replicons in a sequence-, time- and dose-dependent manner. ODN 320 targets a genomic region highly conserved among different HCV genotypes and might thus be able to inhibit a broad range of genotypes and subtypes. CONCLUSIONS: ODNs provide an additional approach for inhibition of HCV, might be superior to siRNAs in terms of stability and cellular delivery, and suitable against HCV resistant to standard therapy. This study underlines the potential of partially double-stranded ODNs as antiviral agents.  相似文献   

19.
Hepatitis C virus (HCV) is a positive-strand RNA virus responsible for chronic liver disease and hepatocellular carcinoma (HCC). RacGTPase-activating protein 1 (RacGAP1) plays an important role during GTP hydrolysis to GDP in Rac1 and CDC42 protein and has been demonstrated to be upregulated in several cancers, including HCC. However, the molecular mechanism leading to the upregulation of RacGAP1 remains poorly understood. Here, we showed that RacGAP1 levels were enhanced in HCV cell-culture-derived (HCVcc) infection. More importantly, we illustrated that RacGAP1 interacts with the viral protein NS5B in mammalian cells. The small interfering RNA (siRNA)-mediated knockdown of RacGAP1 in human hepatoma cell lines inhibited replication of HCV RNA, protein, and production of infectious particles of HCV genotype 2a strain JFH1. Conversely, these were reversed by the expression of a siRNA-resistant RacGAP1 recombinant protein. In addition, viral protein NS5B polymerase activity was significantly reduced by silencing RacGAP1 and, vice versa, was increased by overexpression of RacGAP1 in a cell-based reporter assay. Our results suggest that RacGAP1 plays a crucial role in HCV replication by affecting viral protein NS5B polymerase activity and holds importance for antiviral drug development.  相似文献   

20.
Glycosylation of hepatitis C virus envelope proteins   总被引:7,自引:0,他引:7  
Goffard A  Dubuisson J 《Biochimie》2003,85(3-4):295-301
Enveloped viruses are surrounded by a membrane derived from the host-cell that contains proteins called "envelope proteins". These proteins play a major role in virus assembly and entry. In most of the enveloped viruses, they are modified by N-linked glycosylation which is supposed to play a role in their stability, antigenicity and biological functions. Glycosylation is also known to play a major role in the biogenesis of proteins by being directly and/or indirectly involved in protein folding. Recent studies on hepatitis C virus (HCV) envelope proteins have revealed a complex interplay between cleavage by signal peptidase, folding and glycosylation. The knowledge that has been accumulated on the early steps of glycosylation of these proteins is presented in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号