首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
本文报道纯化的高粱叶片PEP羧化酶经氨基修饰剂TNBS和PLP的修饰迅速失活。酶的TNBS失活与保温时间和抑制剂浓度呈函数关系并表现为拟一级反应的特性。动力学资料表明酶仅被1分子TNBS修饰即失活。TNBS修饰酶的吸收光谱特性表明被修饰的是酶蛋白的赖氨酸残基。底物(PEP)和效应剂(G6P)保护酶免被TNBS失活。计算G6P和酶的解离常数K_d=2.39×10~(-3)M。酶的其他反应组分HCO_3~-和MgCl_2单独存在时均不影响TNBS对酶的失活作用。在被TNBS修饰过程中还导致酶对G6P迅速脱敏,同时却保持酶对甘氨酸的敏感性。  相似文献   

2.
从高梁叶片中纯化的PEP羧化酶在低温下活性迅速丧失,失活是可逆的。将低温失活的酶重新加热至室温酶,活性可以得到恢复。酶的失活速度与介质温度有关。温度越低,失活速度越快。 底物PEP、效应剂G6P、甘氨酸均能防止酶的低温失活。在G6P和甘氨酸同时存在时对酶的保护更为有效。 酶的沉降特性表明在低温下酶由聚合状态(10.2S)解联成低聚状态(4.1S)。而在G6P和甘氨酸的共同保护下,酶在低温下仍保持具有催化活性的聚合状态(10.1S)。 尿索(3M)导致酶的失活,而在G6P和甘氨酸的存在下酶的失活程度大大下降(残存酶活性为53%),而在Mg~(++)同时存在下可使酶对尿素的稳定性大大提高(残存酶活性为79%)。 NaCl,KCl等也具有防止酶低温失活的作用。  相似文献   

3.
连续照光可使玉米和高粱黄化叶切片PEP羧化酶活性提高,同时[~3H]一亮氨酸掺入蛋白质和叶绿素的含量也增加。 应用蛋白质合成抑制剂放线菌酮、放线菌素D和光合作用抑制剂DCMU所得资料表明光刺激黄化叶片PEP羧化酶活性的提高与光合电子传递无关而与叶片蛋白质的合成有关。放线菌酮和放线菌素D强烈抑制酶的活性,同时也抑制放射性标记化合物掺入转绿叶切片中。放射性同位素标记试验表明[~3H]一亮氨酸大量掺入转绿玉米叶切片的PEP羧化酶蛋白中。 应用PEP羧化酶抗血清进行双向免疫扩散和兔疫吸附测定得到的结果亦表明玉米、高粱等C_4植物绿色叶片的PEP羧化酶的形成受光的诱导。  相似文献   

4.
在酸性pH下高粱叶片PEP羧化酶的酶活性的丧失伴随着酶蛋白内源荧光强度和ANS-酶复合物荧光强度的变化。经变性缓冲液(pH 3.4)处理导致蛋白质内源荧光强度的下降和ANS-酶复合物荧光强度的增加,同时表现出ANS-酶复合物发射光谱最大荧光波长的轻微蓝移(从493 nm移至487nm)。经pH 2.6和pH 3.4酸处理变性的PEP羧化酶可以借含有DTT或β-巯基乙醇的缓冲液(pH 8.3)恢复大部份酶活性。在最适条件下,酶活性的恢复可达90%以上,随着酶潘性的恢复,酶的荧光特性随之恢复。酶复性过程遵从一级反应动力学。甘油明显减缓酶的复性过程,减缓程度与其浓度有关。酶的效应剂甘氨酸、丝氢酸和G6P提高酶的复性速度,其中甘氨酸最为有效。动力学分析表明无论上述效应剂或甘油存在与否都不改变复性过程的反应级。  相似文献   

5.
应用NEM对酶的化学修饰技术,报导了半胱氨酸残基与高粱叶片的PEP羧化酶催化功能的关系。结果表明,NEM修饰使PEP羧化酶活性丧失。酶的失活速度表现为拟一级反应动力学特性。随NEM浓度的增加酶的失活速度加快。不同效应剂对酶的NEM失活具不同影响。油酸和MgCl_2促进酶的失活,G6P、甘氨酸和苹果酸各具有不同程度的保护作用。以P_(0.5)值来比较G6P和甘氨酸的保护效果,其值各为4.17mM和3.44mM。而当这两种效应剂以等量浓度同时存在时,P_(0.5)值下降为0.06mM,表现出它们的协同保护作用。从复合效应剂对酶的热失活速度和最大反应速度(V_(max))的影响亦可看出这种协同作用的存在。上述两方面的结果表明G6P和甘氨酸同时存在时诱发的酶的构象状态与它们分别存在时诱发的构象状态各不相同。根据这些结果提出了高粱叶片的PEP羧化酶可能存在的多构象状态模型,并对其生理意义进行了讨论。  相似文献   

6.
应用化学修饰的方法观察精氨酸残基在PEP羧化酶的催化和调节功能中的作用。用丁二酮在硼酸盐缓冲液存在下处理PEP羧化酶使酶活性迅速丧失。其失活速度表现为拟一级反应动力学特性。 低温处理(15℃),或者PEP、G6P、甘氨酸,苹果酸,G6P加甘氨酸和PEP加甘氨酸等酶的底物和效应剂的存在对酶的丁二酮失活均具不同程度的保护作用。PEP和G6P的P_(0.5)值各为4mM和1.5mM。 丁二酮对酶的修饰表现为可逆失活。在Tris-H_2SO_4缓冲液中透析可使被丁二酮修饰而丧失的酶活性恢复。 丁二酮处理还使酶失去对G6P的敏感性,但不影响甘氨酸对酶的调节作用。低温(15℃)下丁二酮修饰酶的G6P脱敏速度比常温下(30℃)底物保护的修饰酶的G6P脱敏速度慢。比较脱敏速度常数(k_(dG6P))前者是0.0116(分~(-1)),后者是0.0562(分~(-1))。甘氨酸的加入不影响底物保护的修饰酶的G6P脱敏速度而明显降低酶的丁二酮失活速度。 这些结果表明精氨酸残基不仅存在于酶的催化部位并为酶的催化所必需,同时还存在于酶的G6P结合部位而参与G6P对酶的调节功能。  相似文献   

7.
植物磷酸烯醇式丙酮酸羧化酶的多生理功能   总被引:2,自引:0,他引:2  
磷酸烯醇式丙酮酸羧化酶(简称PEPC)(正磷酸:草酰乙酸羧化酶,EC4.1.1.31)进行下列催化反,这一反应首先在C_3植物菠菜叶片中发现。后来的研究证明PEPC广泛存在于高等植物的所有组织、藻类及细菌中,但在动物组织中未测出此酶。一般认为,PEPC是一个胞质酶。但也有证据指出PEPC可能与叶绿体有联系。C_3植物组织的PEPC活性是C_4植物叶片的2~5%。从不同来源的植物以及组织中得到的纯化PEPC来  相似文献   

8.
本文报导高梁(C_4植物)和小麦(C_3)植物绿色和黄化叶片中PEP羧化酶的一些特性的比较研究。结果表明不同材料叶片的PEP羧化酶对一些代谢物的反应不同。高梁绿色叶片的PEP羧化酶为G6P、Gly和FDP所激活,为油酸和柠檬酸所抑制。G6P、Gly和FDP对小麦叶片(绿色和黄化叶)、高粱黄化叶片的PEP羧化酶则均无激活作用,油酸和柠檬酸的抑制效应也消失或者下降。 比较这些不同来源的PEP羧化酶在DEAE——纤维素柱层析的结果表明它们具有不同的离子特性。在高粱绿色叶片中分得两种具有不同物理学和动力学特性的PEP羧化酶同功酶(PCⅠ;PCⅡ)。它们的Km(PEP)值各为1.66毫克分子和0.181毫克分子。PCⅡ对G6P的反应较迟钝。从NaCl洗脱梯度、聚丙烯酰胺凝胶电泳和对变构效应剂的反应来看,PCⅡ的一些特性接近于小麦的PE羧化酶。  相似文献   

9.
本文报导高粱叶片的PEP羧化酶与一些代谢物相互作用的动力学特性。MgCl_2对不同PEP羧化酶同工酶表现程度不同的负协同性,Hill系数分别为0`86(PC Ⅰ)和0.47(PCⅡ)。PEP的饱和曲线呈S型。Hill系数为2.4,表现为正协同性。在不同浓度的G6P存在下,曲线的S型特性消失,Hill系数下降至1。而在不同浓度甘氨酸存在下负协同程度逐步增强,Hill系数为0.72。测定不同浓度G6P对酶活化程度的影响结果表明高浓度G6P(10 mM以上)活化程度反而下降,同时加入低浓度的甘氨酸(0.1~5 mM)能减缓高浓度G6P活化作用下降的程度。上述结果表明Mg~( )和PEP不仅作为底物或辅因子参与反应而且以同位协同的方式调节酶构象的变化,G6P和gly活化酶的作用类型是不同的。低浓度油酸(5~50 μM)对酶有强烈的抑制效应。高浓度Mg~( )不能解除其对酶的抑制。不同材料的酶对油酸反应不同。使高梁叶片PC Ⅰ活性完全抑制的油酸浓度(100 μM),对PCⅡ和小麦的PEP羧化酶活性几乎没有多大影响,表明油酸对高梁光合型PEP羧化酶的选择性抑制与Mg~( )的螯合作用无关。酶先后与Mg~( )或油酸预保温试验结果表明油酸可能作用于Mg~( )在酶蛋白上的调节位置。  相似文献   

10.
在pH7.5条件下,用NBS对PEP羧化酶中色氨酸残基进行共价修饰表明,PEP羧化酶中48个色氨酸残基均能被NBS修饰。用邹承鲁图解法求得,其中4个残基为酶表现催化活性所必需的。 PEP羧化酶的变构效应剂G6P、Gly及Mal分别与酶预保温后,再经NBS修饰,前两种处理中,同样浓度的NBS所用修饰的色氨酸残基数和处理后的残存酶活与对照相比有很大的差异,而用Mal处理的,两者与对照相差无几。  相似文献   

11.
纯化的高梁叶片磷酸烯醇式丙酮酸羧化酶(PEP羧化酶)经不同浓度的盐酸胍处理变性失活后,在试验的蛋白浓度范围内,它的失活时间进程的动力学分析表明为一级反应。0.4 M盐酸胍处理25分钟后(O℃),酶的催化活性完全丧失,酶蛋白的远紫外圆二色性光谱、内源荧光光谱及免疫特异性等测定均表明酶的结构发生了深刻变化。甘油及PEP羧化酶的变构效应剂G6P和甘氨酸对酶在盐酸胍溶液中的变性作用有一定的保护效果。变性酶用复性缓冲液稀释20倍后,在最佳条件下,再经30分钟保温,酶的催化活性能恢复70%以上。G6P和甘氨酸能促进变性酶的复性,甘油亦有明显效果。随着酶活性的恢复,它的远紫外圆二色性、内源荧光及免疫特异性也随之恢复,变性酶的复性速率在常温下(25℃)比在低温下(0℃)要快得多。  相似文献   

12.
磷酸烯醇式丙酮酸羧化酶(PEPC)广泛存在于高等植物、藻类及大多数细菌中,催化C4光合作用固定CO2的第一步反应。在过去的10年中关于PEPC分子的一级结构研究已取得显著的进展,最近,通过X-射线衍射分析阐明了大肠杆菌和玉米C4型PEPC分子的三维结构,就这些研究进展进行总结。  相似文献   

13.
蓝藻磷酸烯醇式丙酮酸羧化酶的生物信息学分析   总被引:1,自引:1,他引:1  
应用NCBI、Expasy等在线生物信息学网站对蓝藻磷酸烯醇式丙酮酸羧化酶(PEPC)与其他物种进行序列同源比对,分析相同的保守序列及催化活性位点,构建分子进化树;预测跨膜结构、疏水性/亲水性、二级结构、功能域和模体等.结果显示,蓝藻PEPC与高等植物、细菌、真核藻PEPC同源性都比较低(约为33%),但是它们含有两个类似的活性部位和相同的催化活性位点;该蛋白质是非跨膜的亲水性不稳定蛋白,二级结构以a-螺旋和无规则卷曲为主,舍有一个功能结构域,主要的功能是参与氨基酸的合成.  相似文献   

14.
15.
Ca~(2+)对植物磷酸烯醇式丙酮酸羧化酶的抑制作用   总被引:1,自引:0,他引:1  
低浓度Ca~(2+)明显抑制高粱、马齿苋及大叶伽兰菜叶片PEPCase活性。Ca~(2+)对马齿苋及大叶伽兰菜PEPCase的抑制程度大于对高粱PEPCase的。Ca~(2+)对PEPCase的抑制作用因底物PEP浓度提高而加强,因必需金属离子Mg~(2+)的浓度增加而减弱。提高Mg~(2+)浓度可解除高粱PEPCase的Ca~(2+)抑制作用,但不能完全解除马齿苋PEPCase的抑制作用。G6P、gly可消除Ca~(2+)对高粱PEPCase的抑制作用,但G6P不能消除Ca~(2+)对马齿苋PEPCase的抑制作用。  相似文献   

16.
魏绍巍  黎茵 《生物工程学报》2011,27(12):1702-1710
植物磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvate carboxylase,PEPC,EC 4.1.1.31)是广泛存在的一种细胞质酶,催化磷酸烯醇式丙酮酸(PEP)和HCO3-生成草酰乙酸(OAA),后者可转化生成三羧酸循环的多种中间产物.PEPC在植物细胞中参与植物的光合碳同化等重要代谢途径,并且在不同组织中具有多种生理功能.PEPC同时也参与调控植物种子的营养物质合成与代谢过程,控制糖类物质流向脂肪酸合成或蛋白质合成途径.以下介绍了植物PEPC的种类、蛋白质结构特点及其在植物组织中的调控方式,并重点论述了PEPC在生物基因工程中的应用方面的进展,随着对其功能机制和应用研究的深入,将有助于植物PEPC在高产优质农作物育种、能源植物和工业微生物等的开发利用等方面得到更好的发展与应用.  相似文献   

17.
借硫酸铵分部沉淀、分段抽提和热处理并进一步通过DEAE-纤维素、DEAE-Sephadex和羟基磷灰石等柱层析从高粱叶片中分离得到纯化约74倍的PEP羧化酶制剂。纯化的酶在SDS-聚丙烯酰胺凝胶电泳中呈单带;并表明达到超离心均一。免疫双扩散试验结果显示无RuBP羧化酶蛋白的污染。分子量测定表明酶的分子量为380,000 daltom并由4个相同的亚基组成。  相似文献   

18.
C4,CAM植物磷酸烯醇式丙酮酸羧化酶性质的昼夜...   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
高粱叶片的PEP羧化酶对温度很敏感,在45℃下迅速失活。加入变构活化剂G6P或者甘氨酸对酶的稳定性没有明显的影响。但当在C6P和甘氨酸同时存在时,酶对高温的稳定性则大大提高了。PEP羧化酶在低温中也不稳定。4℃下很快失活。酶的这种冷失活现象也可为加入效应剂G6P和甘氨酸所防止。 比较一些多羟基醇类对酶的热稳定性的影响,表明它们都显著地提高酶的热稳定性。山梨醇的保护作用最强,赤藓醇次之,甘油又次之。说明保护效应与保护剂的羟基数有关。应用含有G6P、甘氨酸和甘油(GGG)的缓冲液对提高酶在纯化和贮存过程中的稳定性非常有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号