共查询到20条相似文献,搜索用时 0 毫秒
1.
A large body of theoretical studies has shown that synchrony among populations is critical for the long-term persistence of species in fragmented habitats. Although the effects of dispersal and environmental factors on synchrony have been investigated theoretically, empirical studies of these relationships have been lacking. We explored the interplay between environmental and demographic factors (fecundity, survival, dispersal) on population synchrony for 53 species of birds. We show that the interspecific differences in mean synchrony were determined by global environmental factors whose action was probably mediated by the abundance of each species. After removing the effect of these global factors on synchrony, the residual synchrony was strongly correlated with dispersal distance. The relationship between dispersal and synchrony was stronger for the species nesting in wet habitats than for those nesting in dry habitats. Our results indicate that different factors synchronize bird populations at different spatial scales, thus highlighting the role of scale in understanding spatial population dynamics and extinction risks. 相似文献
2.
随着种群动态和空间结构研究兴趣的增加,激发了大量的有关空间同步性的理论和实验的研究工作。空间种群的同步波动现象在自然界广泛存在,它的影响和原因引起了很多生态学家的兴趣。Moran定理是一个非常重要的解释。但以往的研究大多假设环境变化为空间相关的白噪音。越来越多的研究表明很多环境变化的时间序列具有正的时间自相关性,也就是说用红噪音来描述更加合理。因此,推广经典的Moran效应来处理空间相关红噪音的情形很有必要。利用线性的二阶自回归过程的种群模型,推导了两种群空间同步性与种群动态异质性和环境变化的时间相关性(即环境噪音的颜色)之间的关系。深入分析了种群异质性和噪音颜色对空间同步性的影响。结果表明种群动态异质性不利于空间同步性,但详细的关系比较复杂。而红色噪音的同步能力体现在两方面:一方面,本身的相关性对同步性有贡献;另一方面,环境变化时间相关性可以通过改变种群密度依赖来影响同步性,但对同步性的影响并无一致性的结论,依赖于种群的平均动态等因素。这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义。 相似文献
3.
4.
Population dynamics of the gray sided-vole,Clethrionomys rufocanus, in Hokkaido, Japan were described on the basis of 225 time series (being from 12 to 31 years long); 194 of the time series
have a length of 23 years or longer. The time series were classified into 11 groups according to geographic proximity and
topographic characteristics of the island of Hokkaido. Mean abundance varied among populations from 1.07 to 21.07 individuals
per 150 trap-nights. The index of variability for population fluctuation (s-index) ranged from 0.204 to 0.629. Another index for population variability (amplitude on log-10 scale) ranged from 0.811
to 2.743. Mean abundance and variability of populations were higher in the more northern and eastern regions of the island.
Most populations, except for the southernmost populations, exhibited significant direct density-dependence in population growth.
Detection rate for delayed density-dependence varied among groups from 0% to 22.6%. Both direct and delayed density-dependence
tended to be stronger in the more northern and eastern populations. The proportion of cyclic populations was higher in the
northern-eastern areas than that in the southern-western areas. There was a clear gradient from the asynchronous populations
in southwest, to the highly synchronized populations in the northeast. 相似文献
5.
6.
7.
8.
We analyse spatial population dynamics showing that periodic or period-like chaotic dynamics produce self-organization structures, such as travelling waves. We suggest that self-organized patterns are associated with spatial synchrony patterns that often depend on geographical distance between subpopulations. The population dynamics also show statistical spatial autocorrelation patterns. We contrast our theoretical simulations with empirical data on annual damages in young sapling stands caused by voles. We conclude, on the basis of the periodicity, synchrony, and spatial autocorrelation patterns, and our simulation results, that vole dynamics represent travelling waves in population dynamics. We suggest that because such synchrony patterns are frequently observed in natural populations, spatial self-organization may be more common in population dynamics than reported in the literature. 相似文献
9.
1. The role of climate variability in determining the spatial and temporal patterns of numerical fluctuations is a central problem in ecology. The influence of the North Atlantic Oscillation (NAO) index on the population dynamics and spatial synchrony of the green spruce aphid Elatobium abietinum across the UK was shown. 2. Fifteen overlapping time series within the UK were analysed; we used nonparametric models for determining the feedback nonlinear structure and the climatic effects. The spatial synchrony of these populations and the relationship between synchrony and NAO was estimated. 3. From the 15 time series across the UK, 11 showed positive and significant NAO effects. In most of the cases the NAO effects were nonlinear showing strong negative effects of low values. The NAO variation improve the explained variance of the first-order feedback models in 14.5%; ranging from 0% to 48%. All data showed strong-nonlinear (concave) feedback structure. In most of the localities the explained variance by the first-order feedback was about 50-60%. 4. The spatial synchrony of the per capita growth rates and residuals is high across long distances for those populations affected by NAO. The correlation function predicts a spatial scale of synchrony of about 350-400 km for NAO influenced populations. 5. We think that simple population theoretical models describing the link between NAO fluctuations and green spruce aphid dynamics may be fundamental for predicting and simulating the consequences of different climatic scenarios of the future. 相似文献
10.
Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics 总被引:11,自引:0,他引:11
Knowledge of the ecological and evolutionary causes of dispersal can be crucial in understanding the behaviour of spatially structured populations, and predicting how species respond to environmental change. Despite the focus of much theoretical research, simplistic assumptions regarding the dispersal process are still made. Dispersal is usually regarded as an unconditional process although in many cases fitness gains of dispersal are dependent on environmental factors and individual state. Condition-dependent dispersal strategies will often be superior to unconditional, fixed strategies. In addition, dispersal is often collapsed into a single parameter, despite it being a process composed of three interdependent stages: emigration, inter-patch movement and immigration, each of which may display different condition dependencies. Empirical studies have investigated correlates of these stages, emigration in particular, providing evidence for the prevalence of conditional dispersal strategies. Ill-defined use of the term 'dispersal', for movement across many different spatial scales, further hinders making general conclusions and relating movement correlates to consequences at the population level. Logistical difficulties preclude a detailed study of dispersal for many species, however incorporating unrealistic dispersal assumptions in spatial population models may yield inaccurate and costly predictions. Further studies are necessary to explore the importance of incorporating specific condition-dependent dispersal strategies for evolutionary and population dynamic predictions. 相似文献
11.
北京东灵山海拔梯度上辽东栎种群结构和空间分布 总被引:13,自引:0,他引:13
种群年龄结构和空间分布格局是种群生态学的核心研究内容.为了阐明辽东栎种群海拔梯度分布特点,在北京东灵山地区辽东栎海拔分布范围(1000~1800m)内调查10条样带,研究种群大小级结构和空间分布的变异.种群的平均胸径在海拔梯度上表现出两段式的分布特征,海拔1480m为两段分布的分界点,在每一段内随海拔增加平均胸径也增加, 这反映了海拔梯度上种群的不同发育历史.种群密度、种群的聚集程度、种群的结构在海拔梯度上的分布特征都与平均胸径分布相似,种群密度和聚集程度与平均胸径为负相关系,其分布趋势与平均胸径相反.总体上,东灵山海拔梯度上辽东栎种群还是比较稳定的.辽东栎种群结构和空间分布在海拔梯度上的分布特征是种群发育历史、物种特性、环境、干扰等因素在海拔梯度上综合作用的结果. 相似文献
12.
13.
西花蓟马是近年来在我国局部地区暴发成灾的重要外来入侵害虫,有关西花蓟马入侵对本地蓟马种群动态、空间分布及优势种影响的报道较少。对云南省昆明市近郊蔬菜花期的蓟马种群动态和空间分布研究表明,蔬菜上的蓟马种类主要是西花蓟马Frankliniella occidentalis(Pergande)、花蓟马F.intonsa(Trybom)、棕榈蓟马T.palmi(Karny)和端大蓟马Megalurothrips distalis(Karny);不同蔬菜上的蓟马优势种存在一定差异,其中辣椒和茼蒿上的蓟马优势种为西花蓟马;韭菜、茄子和四季豆上的蓟马优势种分别为花蓟马、棕榈蓟马和端大蓟马。各蔬菜上的蓟马种群数量以花期为多,盛花期达最大值,其中茄子花上的蓟马成虫平均虫口密度最高,为14.93头/朵。利用聚集度指标进行空间分布检测表明,不同蔬菜上蓟马成虫的空间分布型均为聚集分布,且聚集程度随密度的增加而增大。本研究可为深入探讨西花蓟马对本地蓟马的竞争取代机制积累资料,同时为西花蓟马的综合治理奠定理论基础。 相似文献
14.
Detectability of landscape effects on recolonization increases with regional population density 下载免费PDF全文
Variation in population size over time can influence our ability to identify landscape‐moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape‐moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short‐rotation coppice bio‐energy stands with a four‐year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re‐colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape‐moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level. 相似文献
15.
Spatial scales of population synchrony of two competing species: effects of harvesting and strength of competition 下载免费PDF全文
Theoretical analyses of single‐species models have revealed that the degree of synchrony in fluctuations of geographically separated populations increases with increasing spatial covariation in environmental fluctuations and increased interchange of individuals, but decreases with local strength of density dependence. Here we extend these results to include interspecific competition between two species as well as harvesting. We show that the effects of interspecific competition on the geographical scale of population synchrony are dependent on the pattern of spatial covariation of environmental variables. If the environmental noise is uncorrelated between the competing species, competition generally increases the spatial scale of population synchrony of both species. Otherwise, if the environmental noises are strongly correlated between species, competition generally increases the spatial scale of population synchrony of at least one, but also often of both species. The magnitude of these spatial scaling effects is, however, strongly influenced by the dispersal capacity of the two competing species. If the species are subject to proportional harvesting, this may synchronise population dynamics over large geographical areas, affecting the vulnerability of harvested species to environmental changes. However, the strength of interspecific competition may strongly modify this effect of harvesting on the spatial scale of population synchrony. For example, harvesting of one species may affect the spatial distribution of competing species that are not subject to harvesting. These analytical results provide an important illustration of the importance of applying an ecosystem rather than a single‐species perspective when developing harvest strategies for a sustainable management of exploited species. 相似文献
16.
VIDAR GRØTAN BERNT-ERIK SÆTHER FLURIN FILLI† STEINAR ENGEN‡ 《Global Change Biology》2008,14(2):218-228
Predicting the effects of the expected changes in climate on the dynamics of populations require that critical periods for climate‐induced changes in population size are identified. Based on time series analyses of 26 Swiss ibex (Capra ibex) populations, we show that variation in winter climate affected the annual changes in population size of most of the populations after accounting for the effects of density dependence and demographic stochasticity. In addition, precipitation during early summer also influenced the population fluctuations. This suggests that the major influences of climate on ibex population dynamics operated either through loss of individuals during winter or early summer, or through an effect on fecundity. However, spatial covariation in these climate variables was not able to synchronize the population fluctuations of ibex over larger distances, probably due to large spatial heterogeneity in the effects of single climate variables on different populations. Such spatial variation in the influence of the same climate variable on the local population dynamics suggests that predictions of influences of climate change need to account for local differences in population dynamical responses to climatic conditions. 相似文献
17.
18.
Jenni Nordn Philip J. Harrison Louise Mair Juha Siitonen Anders Lundstrm Oskar Kindvall Tord Snll 《Ecology and evolution》2020,10(6):3079-3089
Understanding spatiotemporal population trends and their drivers is a key aim in population ecology. We further need to be able to predict how the dynamics and sizes of populations are affected in the long term by changing landscapes and climate. However, predictions of future population trends are sensitive to a range of modeling assumptions. Deadwood‐dependent fungi are an excellent system for testing the performance of different predictive models of sessile species as these species have different rarity and spatial population dynamics, the populations are structured at different spatial scales, and they utilize distinct substrates. We tested how the projected large‐scale occupancies of species with differing landscape‐scale occupancies are affected over the coming century by different modeling assumptions. We compared projections based on occupancy models against colonization–extinction models, conducting the modeling at alternative spatial scales and using fine‐ or coarse‐resolution deadwood data. We also tested effects of key explanatory variables on species occurrence and colonization–extinction dynamics. The hierarchical Bayesian models applied were fitted to an extensive repeated survey of deadwood and fungi at 174 patches. We projected higher occurrence probabilities and more positive trends using the occupancy models compared to the colonization–extinction models, with greater difference for the species with lower occupancy, colonization rate, and colonization:extinction ratio than for the species with higher estimates of these statistics. The magnitude of future increase in occupancy depended strongly on the spatial modeling scale and resource resolution. We encourage using colonization–extinction models over occupancy models, modeling the process at the finest resource‐unit resolution that is utilizable by the species, and conducting projections for the same spatial scale and resource resolution at which the model fitting is conducted. Further, the models applied should include key variables driving the metapopulation dynamics, such as the availability of suitable resource units, habitat quality, and spatial connectivity. 相似文献
19.
Spatial genetic structure (SGS) results from the interplay of several demographical processes that are difficult to tease apart. In this study, we explore the specific effects of seed and pollen dispersal and of early postdispersal mortality on the SGS of a seedling cohort (N = 786) recruiting within and around an expanding pedunculate oak (Quercus robur) stand. Using data on dispersal (derived from parentage analysis) and mortality (monitored in the field through two growing seasons), we decompose the overall SGS of the cohort into its components by contrasting the SGS of dispersed (i.e. growing away from their mother tree) vs. nondispersed (i.e. growing beneath their mother tree) and initial vs. surviving seedlings. Patterns differ strongly between nondispersed and dispersed seedlings. Nondispersed seedlings are largely responsible for the positive kinship values observed at short distances in the studied population, whereas dispersed seedlings determine the overall SGS at distances beyond c. 30 m. The paternal alleles of nondispersed seedlings show weak yet significantly positive kinships up to c. 15 m, indicating some limitations in pollen flow that should further promote pedigree structures at short distances. Seedling mortality does not alter SGS, except for a slight increase in the nondispersed group. Field data reveal that mortality in this group is negatively density‐dependent, probably because of small‐scale variation in light conditions. Finally, we observe a remarkable similarity between the SGS of the dispersed seedlings and that of the adults, which probably reflects dispersal processes during the initial expansion of the population. Overall, this study demonstrates that incorporating individual‐level complementary information into analyses can greatly improve the detail and confidence of ecological inferences drawn from SGS. 相似文献
20.
Climate and spatio-temporal variation in the population dynamics of a long distance migrant, the white stork 总被引:4,自引:1,他引:4
Saether BE Grøtan V Tryjanowski P Barbraud C Engen S Fulin M 《The Journal of animal ecology》2006,75(1):80-90
1. A central question in ecology is to separate the relative contribution of density dependence and stochastic influences to annual fluctuations in population size. Here we estimate the deterministic and stochastic components of the dynamics of different European populations of white stork Ciconia ciconia. We then examined whether annual changes in population size was related to the climate during the breeding period (the 'tap hypothesis' sensu Saether, Sutherland & Engen (2004, Advances in Ecological Research, 35, 185 209) or during the nonbreeding period, especially in the winter areas in Africa (the 'tube hypothesis'). 2. A general characteristic of the population dynamics of this long-distance migrant is small environmental stochasticity and strong density regulation around the carrying capacity with short return times to equilibrium. 3. Annual changes in the size of the eastern European populations were correlated by rainfall in the wintering areas in Africa as well as local weather in the breeding areas just before arrival and in the later part of the breeding season and regional climate variation (North Atlantic Oscillation). This indicates that weather influences the population fluctuations of white storks through losses of sexually mature individuals as well as through an effect on the number of individuals that manages to establish themselves in the breeding population. Thus, both the tap and tube hypothesis explains climate influences on white stork population dynamics. 4. The spatial scale of environmental noise after accounting for the local dynamics was 67 km, suggesting that the strong density dependence reduces the synchronizing effects of climate variation on the population dynamics of white stork. 5. Several climate variables reduced the synchrony of the residual variation in population size after accounting for density dependence and demographic stochasticity, indicating that these climate variables had a synchronizing effect on the population fluctuations. In contrast, other climatic variables acted as desynchronizing agents. 6. Our results illustrate that evaluating the effects of common environmental variables on the spatio-temporal variation in population dynamics require estimates and modelling of their influence on the local dynamics. 相似文献