首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many lines of evidence indicate that postsynaptic dendritic spines are plastic during development and largely stable in adulthood. It remains unclear to what degree presynaptic axonal terminals undergo changes in the developing and mature cortex. In this study, we examined the formation and elimination of fluorescently‐labeled axonal boutons in the living mouse barrel cortex with transcranial two‐photon microscopy. We found that the turnover of axonal boutons was significantly higher in 3‐week‐old young mice than in adult mice (older than 3 months). There was a slight but significant net loss of axonal boutons in mice from 1 to 2 months of age. In both young and adult barrel cortex, axonal boutons existed for at least 1 week were less likely to be eliminated than those recently‐formed boutons. In adulthood, 80% of axonal boutons persisted over 12 months and enriched sensory experience caused a slight but not significant increase in the turnover of axonal boutons over 2–4 weeks. Thus, similar to postsynaptic dendritic spines, presynaptic axonal boutons show remarkable stability after development ends. This long‐term stability of synaptic connections is likely important for reliable sensory processing in the mature somatosensory cortex. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 252–261, 2016  相似文献   

2.
Sleep is maximal during early postnatal life when rapid and extensive synapse remodeling occurs. It remains unknown whether and how sleep affects synapse development and plasticity. Using transcranial two‐photon microscopy, we examined the formation and elimination of fluorescently labeled dendritic spines and filopodia of Layer 5 pyramidal neurons in the barrel cortex of 3‐week‐old mice during wakefulness and sleep. We observed high turnover of dendritic protrusions over 2 h in both wake and sleep states. The formation rate of dendritic spines or filopodia over 2 h was comparable between the two states. The elimination rate of dendritic spines or filopodia was lower during 2‐h wakefulness than during 2‐h sleep. Similar results were observed on dendritic protrusion dynamics over 12‐h light/dark cycle when mice spent more time asleep or awake. The substantial remodeling of dendritic protrusions during the sleep state supports the notion that sleep plays an important role in the development and plasticity of synaptic connections in the mouse cortex. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

3.
Transient and persistent dendritic spines in the neocortex in vivo   总被引:23,自引:0,他引:23  
Dendritic spines were imaged over days to months in the apical tufts of neocortical pyramidal neurons (layers 5 and 2/3) in vivo. A fraction of thin spines appeared and disappeared over a few days, while most thick spines persisted for months. In the somatosensory cortex, from postnatal day (PND) 16 to PND 25 spine retractions exceeded additions, resulting in a net loss of spines. The fraction of persistent spines (lifetime > or = 8 days) grew gradually during development and into adulthood (PND 16-25, 35%; PND 35-80, 54%; PND 80-120, 66%; PND 175-225, 73%), providing evidence that synaptic circuits continue to stabilize even in the adult brain, long after the closure of known critical periods. In 6-month-old mice, spines turn over more slowly in visual compared to somatosensory cortex, possibly reflecting differences in the capacity for experience-dependent plasticity in these brain regions.  相似文献   

4.
The development of nervous system connectivity depends upon the arborization of dendritic fields and the stabilization of dendritic spine synapses. It is well established that neuronal activity and the neurotrophin BDNF modulate these correlated processes. However, the downstream mechanisms by which these extrinsic signals regulate dendritic development and spine stabilization are less well known. Here we report that a substrate of BDNF signaling, the Ankyrin Repeat‐rich Membrane Spanning (ARMS) protein or Kidins220, plays a critical role in the branching of cortical and hippocampal dendrites and in the turnover of cortical spines. In the barrel somatosensory cortex and the dentate gyrus, regions where ARMS/Kidins220 is highly expressed, no difference in the complexity of dendritic arbors was observed in 1‐month‐old adolescent ARMS/Kidins220+/? mice compared to wild‐type littermates. However, at 3 months of age, young adult ARMS/Kidins220+/? mice exhibited decreased dendritic complexity. This suggests that ARMS/Kidins220 does not play a significant role in the initial formation of dendrites but, rather, is involved in the refinement or stabilization of the arbors later in development. In addition, at 1 month of age, the rate of spine elimination was higher in ARMS/Kidins220+/? mice than in wild‐type mice, suggesting that ARMS/Kidins220+/? levels regulate spine stability. Taken together, these data suggest that ARMS/Kidins220 is important for the growth of dendritic arbors and spine stability during an activity‐ and BDNF‐dependent period of development. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

5.
Knott GW  Quairiaux C  Genoud C  Welker E 《Neuron》2002,34(2):265-273
During development, alterations in sensory experience modify the structure of cortical neurons, particularly at the level of the dendritic spine. Are similar adaptations involved in plasticity of the adult cortex? Here we show that a 24 hr period of single whisker stimulation in freely moving adult mice increases, by 36%, the total synaptic density in the corresponding cortical barrel. This is due to an increase in both excitatory and inhibitory synapses found on spines. Four days after stimulation, the inhibitory inputs to the spines remain despite total synaptic density returning to pre-stimulation levels. Functional analysis of layer IV cells demonstrated altered response properties, immediately after stimulation, as well as four days later. These results indicate activity-dependent alterations in synaptic circuitry in adulthood, modifying the flow of sensory information into the cerebral cortex.  相似文献   

6.
Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.  相似文献   

7.
Previous studies have shown that sensory and motor experiences play an important role in the remodeling of dendritic spines of layer 5 (L5) pyramidal neurons in the cortex. In this study, we examined the effects of sensory deprivation and motor learning on dendritic spine remodeling of layer 2/3 (L2/3) pyramidal neurons in the barrel and motor cortices. Similar to L5 pyramidal neurons, spines on apical dendrites of L2/3 pyramidal neurons are plastic during development and largely stable in adulthood. Sensory deprivation via whisker trimming reduces the elimination rate of existing spines without significant effect on the rate of spine formation in the developing barrel cortex. Furthermore, we show that motor training increases the formation and elimination of dendritic spines in the primary motor cortex. Unlike L5 pyramidal neurons, however, there is no significant difference in the rate of spine formation between sibling dendritic branches of L2/3 pyramidal neurons. Our studies indicate that sensory and motor learning experiences have important impact on dendritic spine remodeling in L2/3 pyramidal neurons. They also suggest that the rules governing experience‐dependent spine remodeling are largely similar, but not identical, between L2/3 and L5 pyramidal neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 277–286, 2016  相似文献   

8.
The genes that govern how experience refines neural circuitry and alters synaptic structural plasticity are poorly understood. The nogo-66 receptor 1 gene (ngr1) is one candidate that may restrict the rate of learning as well as basal anatomical plasticity in adult cerebral cortex. To investigate if ngr1 limits the rate of learning we tested adult ngr1 null mice on a tactile learning task. Ngr1 mutants display greater overall performance despite a normal rate of improvement on the gap-cross assay, a whisker-dependent learning paradigm. To determine if ngr1 restricts basal anatomical plasticity in the associated sensory cortex, we repeatedly imaged dendritic spines and axonal varicosities of both constitutive and conditional adult ngr1 mutant mice in somatosensory barrel cortex for two weeks through cranial windows with two-photon chronic in vivo imaging. Neither constant nor acute deletion of ngr1 affected turnover or stability of dendritic spines or axonal boutons. The improved performance on the gap-cross task is not attributable to greater motor coordination, as ngr1 mutant mice possess a mild deficit in overall performance and a normal learning rate on the rotarod, a motor task. Mice lacking ngr1 also exhibit normal induction of tone-associated fear conditioning yet accelerated fear extinction and impaired consolidation. Thus, ngr1 alters tactile and motor task performance but does not appear to limit the rate of tactile or motor learning, nor determine the low set point for synaptic turnover in sensory cortex.  相似文献   

9.
Dendritic spines are the postsynaptic sites of most excitatory synapses in the mammalian brain. With the advent of two-photon microscopy and transgenic mice expressing fluorescent proteins, dendritic spines can now be imaged in the living cerebral cortex over time scales ranging from seconds to years. Recent studies with this in vivo imaging approach have begun to provide important insights into the development and plasticity of dendritic spines in the intact brain. Here, we review these studies and discuss technical requirements for image acquisition. We envision that intravital two-photon imaging at the level of individual synapses will greatly expand our current understandings of how neuronal networks are assembled and modified throughout life.  相似文献   

10.
Dendritic spines serve as the post‐synaptic structural component of synapses. The structure and function of dendritic spines are dynamically regulated by a number of signaling pathways and allow for normal neural processing, whereas aberrant spine changes are thought to contribute to cognitive impairment in neuropsychiatric and neurodegenerative disorders. However, spine changes within different brain regions and their contribution to specific cognitive functions, especially later in adulthood, is not well understood. In this study, we used late‐adult KALRN‐deficient mice as a tool to investigate the vulnerability of different cognitive functions to long‐term perturbations in spine plasticity in different forebrain regions. We found that in these mice, loss of one or both copies of KALRN lead to genotype and brain region‐dependent reductions in spine density. Surprisingly, heterozygote and knockout mice showed differential impairments in cognitive phenotypes, including working memory, social recognition, and social approach. Correlation analysis between the site and magnitude of spine loss and behavioral alterations suggests that the interplay between brain regions is critical for complex cognitive processing and underscores the importance of spine plasticity in normal cognitive function. Long‐term perturbation of spine plasticity results in distinct impairments of cognitive function. Using genetically modified mice deficient in a central regulator of spine plasticity, we investigated the brain region‐specific contribution of spine numbers to various cognitive functions. We found distinct cognitive functions display differential sensitivity to spine loss in the cortex and hippocampus. Our data support spines as neuronal structures important for cognition and suggest interplay between brain regions is critical for complex cognitive processing.  相似文献   

11.
Higher brain function in mammals primarily relies on complex yet sophisticated neuronal circuits in the neocortex. In early developmental stages, neocortical circuits are coarse. Mostly postnatally, the circuits are reorganized to establish mature precise connectivity, in an activity-dependent manner. These connections underlie adult brain function. The rodent somatosensory cortex (barrel cortex) contains a barrel map in layer 4 (L4) and has been considered an ideal model for the study of postnatal neuronal circuit formation since the first report of barrels in 1970. Recently, two-photon microscopy has been used for analyses of neuronal circuit formation in the mammalian brain during early postnatal development. These studies have further highlighted the mouse barrel cortex as an ideal model. In particular, the unique dendritic projection pattern of barrel cortex L4 spiny stellate neurons (barrel neurons) is key for the precise one-to-one functional relationship between whiskers and barrels and thus an important target of studies. In this article, I will review the morphological aspects of postnatal development of neocortical circuits revealed by recent two-photon in vivo imaging studies of the mouse barrel cortex and other related works. The focus of this review will be on barrel neuron dendritic refinement during neonatal development.  相似文献   

12.
用6、12与31个月的雄性Wistar大鼠的大脑Krieg 2、3区皮质,对其V层大锥体细胞的五段50μm长度内的树突棘做形态学定量研究。在Golgi法的切片中共计数了三个年龄组的151个细胞的725段树突的棘密度。结果表明,老年大鼠比成年和青年大鼠的棘密度普遍下降。其中以基树突与侧树突棘度下降最显著(减少24%左右),顶树突只中段有明显减少。老年大鼠锥体细胞还常出现胞体、树突及其分支的明显形态改变。  相似文献   

13.
It is known that age is an important factor for postoperative cognitive dysfunction (POCD) and the patients with POCD suffer from the impairment of multiple brain regions and multiple brain functions. However currently animal studies of POCD mainly focus on hippocampus region, therefore in this study we performed partial hepatectomy in young adult and aged rats to test the questions (1) whether POCD in animals involves other brain areas besides hippocampus; (2) how age influences POCD of young adult and aged animals. We found that (1) in young adult rats, the memory was not significantly affected (P>0.05) 1d, 3d and 7d after partial hepatectomy, but was significantly impaired (p<0.001) in aged rats 1d and 3d post-surgery; (2) in young adult rats, the surgery did not significantly affect the densities of dendritic spines of neurons at CA1, dentate gyrus (DG) and cingulate cortex (P>0.05, respectively) 1d and 3d post-surgery, but the spine densities at CA1 and DG of aged rats were significant reduced 1d and 3d post-surgery (p<0.001, respectively), however this didn’t happen at cingulate cortex (P>0.05); (3) In young adult rats, surgery didn’t affect the activation of microglia and levels of TNF-α and IL-1β at hippocampus (P>0.05), but significantly activated microglia and increased levels of TNF-α and IL-1β at hippocampus of aged rats (P<0.05). Our data suggest that (1) partial hepatectomy-induced POCD mainly involves hippocampus impairments, and (2) differential loss of neuronal dendritic spines and neuroinflammation at hippocampus are most likely the mechanism for the formation of POCD in aged rats.  相似文献   

14.
Dendritic spines are the major targets of excitatory synaptic input. They exist in a wide variety of shapes and sizes, from thin to mushroom-shaped to stubby. One of the striking characteristics of dendritic spines is their motile nature. Spines can undergo various structural modifications such as changes in density, shape, size, and motility. During development, spines are highly dynamic and many spines are formed and eliminated. As animals mature, most spines become stable and the vast majority of them can last throughout life. However, spine morphology can still undergo progressive changes. Structural dynamics of dendritic spines is thought to play important roles in synapse plasticity and information processing. Abnormal spine structures are often associated with malfunction of the nervous system.  相似文献   

15.
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer’s disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4’s cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19–21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7–8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.  相似文献   

16.
Bisphenol-A (BPA), a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effect of perinatal exposure to BPA on the expression of synaptic proteins neurexin1 (Nrxn1) and neuroligin3 (Nlgn3), dendritic spine density and spatial memory in postnatal male mice. The pregnant mice were orally administered BPA (50 µg/kgbw/d) from gestation day (GD) 7 to postnatal day (PND) 21 and sesame oil was used as a vehicle control. In Morris water maze (MWM) test, BPA extended the escape latency time to locate the hidden platform in 8 weeks male mice. RT-PCR and Immunoblotting results showed significant upregulation of Nrxn1 and Nlgn3 expression in both cerebral cortex and hippocampus of 3 and 8 weeks male mice. This was further substantiated by in-situ hybridization and immunofluorescence techniques. BPA also significantly increased the density of dendritic spines in both regions, as analyzed by rapid Golgi staining. Thus our data suggest that perinatal exposure to BPA impairs spatial memory through upregulation of expression of synaptic proteins Nrxn1 and Nlgn3 and increased dendritic spine density in cerebral cortex and hippocampus of postnatal male mice.  相似文献   

17.
Ashby MC  Isaac JT 《Neuron》2011,70(3):510-521
Local recurrent excitatory circuits are ubiquitous in neocortex, yet little is known about their development or architecture. Here we introduce a quantitative technique for efficient single-cell resolution circuit mapping using 2-photon (2P) glutamate uncaging and analyze experience-dependent neonatal development of the layer 4 barrel cortex local excitatory circuit. We show that sensory experience specifically drives a 3-fold increase in connectivity at postnatal day (P) 9, producing a highly recurrent network. A profound dendritic spinogenesis occurs concurrent with the connectivity increase, but this is not experience dependent. However, in experience-deprived cortex, a much greater proportion of spines lack postsynaptic AMPA receptors (AMPARs) and synaptic connectivity via NMDA receptors (NMDARs) is the same as in normally developing cortex. Thus we describe a approach for quantitative circuit mapping and show that sensory experience sculpts an intrinsically developing template network, which is based on NMDAR-only synapses, by driving AMPARs into newly formed silent spines.  相似文献   

18.
The emergence of barrel cytoarchitecture in mouse somatosensory cortex is extremely well defined. However, mechanisms underlying the development of this cellular organization are not completely understood. While it is generally accepted that hollows emerge via passive displacement of cortical cells by dense thalamocortical afferent clusters in barrel centers, it is not known what causes cellular segregation of barrel sides and septa. Here, we hypothesized that the emergence of sides and septa is related to the progressive asymmetry of dendrites from the cells of the barrel side toward the barrel hollow during development. We tested this hypothesis in the barrel cortex of growth-associated protein-43 heterozygous mice (GAP43 (+/?) mice) that display a 2-day delay in retraction of septally oriented dendrites compared to (+/+) littermates. We predicted that this delayed retraction would result in a subsequent 2-day delay in the emergence of barrel sides and septa. Using cresyl violet staining of barrel cortex, we found that initial emergence of hollows was not different between GAP43 (+/?) mice and (+/+) littermate controls. However, the emergence of sides and septa was delayed by 2 days, supporting our hypothesis that the emergence of barrel sides and septa is related to, and perhaps reliant upon, the developmental step of dendritic orientation toward barrel hollows. This process, which is mechanistically distinct from the emergence of barrel hollows, is likely due to both active and passive events resulting from asymmetric cell orientation.  相似文献   

19.
20.
Rapid redistribution of synaptic PSD-95 in the neocortex in vivo   总被引:1,自引:0,他引:1       下载免费PDF全文
Most excitatory synapses terminate on dendritic spines. Spines vary in size, and their volumes are proportional to the area of the postsynaptic density (PSD) and synaptic strength. PSD-95 is an abundant multi-domain postsynaptic scaffolding protein that clusters glutamate receptors and organizes the associated signaling complexes. PSD-95 is thought to determine the size and strength of synapses. Although spines and their synapses can persist for months in vivo, PSD-95 and other PSD proteins have shorter half-lives in vitro, on the order of hours. To probe the mechanisms underlying synapse stability, we measured the dynamics of synaptic PSD-95 clusters in vivo. Using two-photon microscopy, we imaged PSD-95 tagged with GFP in layer 2/3 dendrites in the developing (postnatal day 10–21) barrel cortex. A subset of PSD-95 clusters was stable for days. Using two-photon photoactivation of PSD-95 tagged with photoactivatable GFP (paGFP), we measured the time over which PSD-95 molecules were retained in individual spines. Synaptic PSD-95 turned over rapidly (median retention times τr ~ 22–63 min from P10–P21) and exchanged with PSD-95 in neighboring spines by diffusion. PSDs therefore share a dynamic pool of PSD-95. Large PSDs in large spines captured more diffusing PSD-95 and also retained PSD-95 longer than small PSDs. Changes in the sizes of individual PSDs over days were associated with concomitant changes in PSD-95 retention times. Furthermore, retention times increased with developmental age (τr ~ 100 min at postnatal day 70) and decreased dramatically following sensory deprivation. Our data suggest that individual PSDs compete for PSD-95 and that the kinetic interactions between PSD molecules and PSDs are tuned to regulate PSD size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号