首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms imposing a gibberellin (GA) requirement to promote the germination of dormant and non-dormant Arabidopsis seeds were analyzed using the GA-deficient mutant ga1, several seed coat pigmentation and structure mutants, and the abscisic acid (ABA)-deficient mutant aba1. Testa mutants, which exhibit reduced seed dormancy, were not resistant to GA biosynthesis inhibitors such as tetcyclacis and paclobutrazol, contrarily to what was found before for other non-dormant mutants in Arabidopsis. However, testa mutants were more sensitive to exogenous GAs than the wild-types in the presence of the inhibitors or when transferred to a GA-deficient background. The germination capacity of the ga1-1 mutant could be integrally restored, without the help of exogenous GAs, by removing the envelopes or by transferring the mutation to a tt background (tt4 and ttg1). The double mutants still required light and chilling for dormancy breaking, which may indicate that both agents can have an effect independently of GA biosynthesis. The ABA biosynthesis inhibitor norflurazon was partially efficient in releasing the dormancy of wild-type and mutant seeds. These results suggest that GAs are required to overcome the germination constraints imposed both by the seed coat and ABA-related embryo dormancy.  相似文献   

2.
3.
4.
Two tomato (Lycopersicon esculentum) mutants with dark testae displaying poor germination rate and percentage on both water and 100 microM gibberellin(4 + 7) were recovered. The mutants were allelic (black seed1-1; bks1-1 and bks1-2), inherited in Mendelian fashion as a recessive gene residing on chromosome 11. They are not allelic to bs (brown seed) -1, -2, or -4, which impair seed germination and possess dark testae. The bks/bs mutants accumulated dark pigment in the cell layers of the testa above the endothelium, which itself accumulated proanthocyanidins similar to wild type. The poor germination performance of bks mutant seeds was because of impediment of the mutant testae to radicle egress. Imbibition on gibberellin(4 + 7) did not ameliorate germination percentage or rate. The toughening of the bks testa and associated poor germination were partially overcome when seeds were not dried before germination or were dried under N(2). The seeds of the bks mutant have elevated activity of at least one enzyme responsible for the detoxification of reactive oxygen species. The bks mutant is epistatic to 12 anthocyaninless mutants of tomato. Bio- and physicochemical analysis of the bks testa determined that it accumulated a melanic substance. Inheritance of bks/bs mutations contrasts with that of the anthocyaninless mutants, which are inherited according to the genotype of the maternally derived testa. This suggests that the testa manufactures components before its demise that can maximize testa strength, whereas the endosperm/embryo produces factors that are conveyed to the testa, mitigating this process.  相似文献   

5.
From an ethylmethane sulphonate-mutagenized M2 population of Arabidopsis thaliana L. var Landsberg erecta, a mutant was isolated on the basis of its ability to germinate in the presence of a germination inhibitory concentration (0.35 mM) of spermine. The mutant produced yellowish green seeds that lacked a mucilaginous sheath, exhibited reduced dormancy and were generally viviparous under ambient conditions. Dose-response assays indicated increased resistance of the mutant to spermine but normal sensitivity to spermidine, putrescine and abscisic acid. The spermine resistance and the associated phenotype of the mutant was inherited as a single recessive nuclear mutation. Following the genetic analysis, spermine-resistant mutant has been designated as spr2. The results suggest a role for spermine in seed dormancy.  相似文献   

6.
Anthocyanidin reductase encoded by the BANYULS (BAN) gene is the core enzyme in proanthocyanidin (PA) biosynthesis. Here, we analyzed the developmental mechanisms that regulate the spatiotemporal expression of BAN in the developing Arabidopsis seed coat. PA-accumulating cells were localized histochemically in the inner integument (seed body and micropyle) and pigment strand (chalaza). BAN promoter activity was detected specifically in these cells. Gain-of-function experiments showed that an 86-bp promoter fragment functioned as an enhancer specific for PA-accumulating cells. Mutations in regulatory genes of PA biosynthesis abolished BAN promoter activity (transparent testa2 [tt2], tt8, and transparent testa glabra1 [ttg1]), modified its spatial pattern (tt1 and tt16), or had no influence (ttg2), thus revealing complex regulatory interactions at several developmental levels. Genetic ablation of PA-accumulating cells targeted by the BAN promoter fused to BARNASE led to the formation of normal plants that produced viable yellow seeds. Importantly, these seeds had no obvious defects in endosperm and embryo development.  相似文献   

7.
The Arabidopsis thaliana seed coat typically has a brown color due to the accumulation of flavonoid pigments in the testa. Mutants of A. thaliana with defects in pigment biosynthesis often produce seeds that are olive brown or even yellow in appearence, and the responsible genetic loci are referred to as TRANSPARENT TESTA (TT). Large-scale screening for mutants affected in seed development and complementation analysis of a candidate mutant line with all published A. thalianatt mutants identified a new tt locus designated tt15. The tt15 mutation maps to the lower part of chromosome 1. Mutant plants produced pale greenish-brown seeds whose dormancy was slightly reduced. The phenotype was consistent with the maternal origin of the testa. Analysis of pigment accumulation and the study of expression patterns of genes involved in flavonoid biosynthesis in tt15 plants and seeds indicated a seed-specific phenotype. Most notable was a reduction of the cyanidin and quercetin content of tt15 seeds. Received: 2 October 1998 / Accepted: 10 October 1998  相似文献   

8.
Temperature is a primary environmental cue for seed germination of many weeds and vegetables. To investigate the mechanism of germination regulation by temperature, we selected five high temperature (thermoinhibition)-resistant germination mutants (TRW lines) from 20,000 T-DNA insertion lines of Arabidopsis. Segregation analyses indicated that each of the five lines had single locus recessive mutations. The seeds of TRW134-15 and TRW187 showed reduced sensitivity to ABA and also to the gibberrellin biosynthesis inhibitor, paclobutrazol. Genetic and nucleotide sequencing analyses indicated that TRW187 is a new allele of abi3 (abi3-14). TRW71-1 exhibited a maternal effect for both thermoinhibition-resistant and transparent testa phenotypes, and genetic analysis revealed that the mutation was allelic to tt7 (tt7-4 sib). Interestingly, the seeds of reduced dormancy mutants rdo1, rdo2, rdo3 and rdo4 were also thermoinhibition tolerant, and all the TRW seeds showed reduced dormancy. Like rdo3, TRW13-1 had shorter siliques and slightly shorter stems than the wild type. The mutation of TRW13-1 was mapped to the bottom arm of chromosome 1 where rdo3 has also been mapped, but the two mutants are not allelic. We designated TRW13-1 as thermoinhibition-resistant germination 1 (trg1). We also mapped the ABA-insensitive mutation of TRW134-15 to the bottom arm of chromosome 5 and named it trg2. These results show that both embryo/endosperm and maternal factors contribute to germination inhibition at supraoptimal temperatures in Arabidopsis. In addition, we confirm the role of ABA in thermoinhibition of seed germination and a link between seed physiological dormancy and response to high temperature.  相似文献   

9.
The testa of higher plant seeds protects the embryo against adverse environmental conditions. Its role is assumed mainly by controlling germination through dormancy imposition and by limiting the detrimental activity of physical and biological agents during seed storage. To analyze the function of the testa in the model plant Arabidopsis, we compared mutants affected in testa pigmentation and/or structure for dormancy, germination, and storability. The seeds of most mutants exhibited reduced dormancy. Moreover, unlike wild-type testas, mutant testas were permeable to tetrazolium salts. These altered dormancy and tetrazolium uptake properties were related to defects in the pigmentation of the endothelium and its neighboring crushed parenchymatic layers, as determined by vanillin staining and microscopic observations. Structural aberrations such as missing layers or a modified epidermal layer in specific mutants also affected dormancy levels and permeability to tetrazolium. Both structural and pigmentation mutants deteriorated faster than the wild types during natural aging at room temperature, with structural mutants being the most strongly affected.  相似文献   

10.
Finkelstein RR 《Plant physiology》1994,105(4):1203-1208
Three abscisic acid (ABA)-controlled responses (seed dormancy, inhibition of germination by applied ABA, and stomatal closure) were compared in wild-type versus homo- and heterozygotes of two Arabidopsis thaliana ABA-insensitive mutants, abi1 and abi2. We found that sensitivity of seeds to applied ABA is partially maternally controlled but that seed dormancy is determined by the embryonic genotype. The effects of the abi1 and abi2 mutations on ABA sensitivity of seed germination ranged from recessive to nearly fully dominant, depending on the parental source of the mutant allele. This maternal effect disappeared during vegetative growth. Stomatal regulation in heterozygotes showed substantial variability, but the average water loss was intermediate between that of homozygous mutants and wild type.  相似文献   

11.
Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis   总被引:22,自引:7,他引:15  
Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt) , disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci ( tt3, tt4, tt5 and ttg ) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus ( ttg ) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1–7 and ttg . Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10 . Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg , even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis .  相似文献   

12.
Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.  相似文献   

13.
14.
Leubner-Metzger G 《Planta》2002,215(6):959-968
'Coat-imposed' seed dormancy of many non-endospermic and endospermic species is released during after-ripening. After-ripening-mediated promotion of tobacco ( Nicotiana tabacum L.) seed germination is mainly due to a promotion of testa rupture and a similar promotion of subsequent endosperm rupture. Treatment of after-ripened or freshly harvested mature seeds with abscisic acid (ABA) delays endosperm rupture and inhibits the induction of class I beta-1,3-glucanase (betaGlu I) in the micropylar endosperm, but does not affect the kinetics of testa rupture. After-ripening-mediated release of photodormancy is correlated with a decreased gibberellin (GA) requirement for testa rupture during dark-imbibition. Reciprocal crosses between wild-type tobacco and sense-betaGlu I transformant lines showed that betaGlu I over-expression in the seed covering layers can replace the promoting effect of after-ripening on testa rupture in light, but only if the mother plant is a sense-betaGlu I line. This maternal effect supports the model of two sites for betaGlu I action: (i) betaGlu I contribution to the after-ripening-mediated release of dormancy in the dry seed state, which is manifested in the promotion and ABA-insensitivity of testa rupture during imbibition. (ii) ABA-sensitive expression of betaGlu I in the micropylar endosperm, which contributes to endosperm rupture. The importance of GA-signaling and testa characteristics appear to be a common feature during the after-ripening-mediated release of coat-imposed dormancy in endospermic and non-endospermic seeds.  相似文献   

15.
16.
We use Arabidopsis thaliana as a model to investigate coordination of cell proliferation and cell elongation in the three components that develop side by side in the seed. Two of these, the embryo and its nurturing annex, the endosperm, are placed under zygotic control and develop within the seed integument placed under maternal control. We show that integument cell proliferation and endosperm growth are largely independent from each other. By contrast, prevention of cell elongation in the integument by the mutation transparent testa glabra2 (ttg2) restricts endosperm and seed growth. Conversely, endosperm growth controlled by the HAIKU (IKU) genetic pathway modulates integument cell elongation. Combinations of TTG2 defective seed integument with reduction of endosperm size by iku mutations identify integument cell elongation and endosperm growth as the primary regulators of seed size. Our results strongly suggest that a cross talk between maternal and zygotic controls represents the primary regulator of the coordinated control of seed size in Arabidopsis.  相似文献   

17.
18.
19.
UPF1 RNA helicase plays a central role in nonsense-mediated mRNA decay (NMD), which specifically recognizes aberrant mRNAs containing premature termination codons and targets them for degradation. Although NMD factors are highly conserved among eukaryotes, little is known about the role of NMD in plant growth and development. The lba1 mutant of Arabidopsis thaliana with a Gly(851)-->Glu missense mutation in AtUPF1 yielded seeds that were on average 22% longer in the long axis and 35% heavier than the wild-type Col seeds. Expression of the wild-type AtUPF1 in this mutant reduced the seeds to a normal size. During early stages of seed development, globular to torpedo stages of the embryos were contained within seed sacs that were larger in lba1 than in Col. Furthermore, the distance between seeds in siliques was greater in lba1 than in Col, suggesting that the lba1 mutation may affect ovule development. Self-pollinated atupf1-3(+/-) plants heterozygous for AtUPF1 disrupted by T-DNA insertion developed atupf1-3(-/-) seeds with a size and shape similar to those of Col seeds. However, the atupf1-3(-/-) seedlings stopped growing after radicle emergence from the seed coat, and this seedling lethality was rescued by expressing the wild-type AtUPF1. These results suggest that the lba1 mutation in AtUPF1 maternally affects seed development and that AtUPF1 is essential for seedling growth.  相似文献   

20.
红松种子休眠与种皮的关系   总被引:11,自引:0,他引:11  
本文探讨红松(Pinus koraiensis)种子休眠与其种皮之间的关系。夹破中种皮后,种子萌发率很低。在离体胚培养基中外加 ABA 及经 ABA 溶液浸泡种子的萌发实验表明,ABA也不是导致休眠的关键因素。试验确认红松种子存在透气障碍,即中、内种皮对氧气的进入都有阻碍作用。经低温砂藏后,种皮的阻碍作用明显减小。种皮的透气性障碍可能是诱导休限的主导因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号