首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foll M  Gaggiotti O 《Genetics》2006,174(2):875-891
The study of population genetic structure is a fundamental problem in population biology because it helps us obtain a deeper understanding of the evolutionary process. One of the issues most assiduously studied in this context is the assessment of the relative importance of environmental factors (geographic distance, language, temperature, altitude, etc.) on the genetic structure of populations. The most widely used method to address this question is the multivariate Mantel test, a nonparametric method that calculates a correlation coefficient between a dependent matrix of pairwise population genetic distances and one or more independent matrices of environmental differences. Here we present a hierarchical Bayesian method that estimates F(ST) values for each local population and relates them to environmental factors using a generalized linear model. The method is demonstrated by applying it to two data sets, a data set for a population of the argan tree and a human data set comprising 51 populations distributed worldwide. We also carry out a simulation study to investigate the performance of the method and find that it can correctly identify the factors that play a role in the structuring of genetic diversity under a wide range of scenarios.  相似文献   

2.
A primary goal of molecular ecology is to understand the influence of abiotic factors on the spatial distribution of genetic variation. Features including altitudinal clines, topography and landscape characteristics affect the proportion of suitable habitat, influence dispersal patterns, and ultimately structure genetic differentiation among populations. We studied the effects of altitude and topography on genetic variation of long-toed salamanders (Ambystoma macrodactylum), a geographically widespread amphibian species throughout northwestern North America. We focused on 10 low altitude sites (< 1200 m) and 11 high-altitude sites in northwestern Montana and determined multilocus genotypes for 549 individuals using seven microsatellite loci. We tested four hypotheses: (1) gene flow is limited between high- and low-altitude sites; and, (2) gene flow is limited among high-altitude sites due to harsh habitat and extreme topographical relief between sites; (3) low-altitude sites exhibit higher among-site gene flow due to frequent flooding events and low altitudinal relief; and (4) there is a negative correlation between altitude and genetic variation. Overall F(ST) values were moderate (0.08611; P < 0.001). Pairwise F(ST) estimates between high and low populations and a population graphing method supported the hypothesis that low-altitude and high-altitude sites, taken together, are genetically differentiated from each other. Also as predicted, gene flow is more prominent among low-altitude sites than high-altitude sites; low-altitude sites had a significantly lower F(ST) (0.03995; P < 0.001) than high altitude sites (F(ST) = 0.10271; P < 0.001). Use of Bayesian analysis of population structure (BAPS) resulted in delineation of 10 genetic groups, two among low-altitude populations and eight among high-altitude populations. In addition, within high altitude populations, basin-level genetic structuring was apparent. A nonequilibrium algorithm for detecting current migration rates supported these population distinctions. Finally, we also found a significant negative correlation between genetic diversity and altitude. These results are consistent with the hypothesis that topography and altitudinal gradients shape the spatial distribution of genetic variation in a species with a broad geographical range and diverse life history. Our study sheds light on which key factors limit dispersal and ultimately species' distributions.  相似文献   

3.
F. Rousset 《Genetics》1997,145(4):1219-1228
I reexamine the use of isolation by distance models as a basis for the estimation of demographic parameters from measures of population subdivision. To that aim, I first provide results for values of F-statistics in one-dimensional models and coalescence times in two-dimensional models, and make more precise earlier results for F-statistics in two-dimensional models and coalescence times in one-dimensional models. Based on these results, I propose a method of data analysis involving the regression of F(ST)/(1 - F(ST)) estimates for pairs of subpopulations on geographic distance for populations along linear habitats or logarithm of distance for populations in two-dimensional habitats. This regression provides in principle an estimate of the product of population density and second moment of parental axial distance. In two cases where comparison to direct estimates is possible, the method proposed here is more satisfactory than previous indirect methods.  相似文献   

4.
Microsatellite null alleles and estimation of population differentiation   总被引:20,自引:0,他引:20  
Microsatellite null alleles are commonly encountered in population genetics studies, yet little is known about their impact on the estimation of population differentiation. Computer simulations based on the coalescent were used to investigate the evolutionary dynamics of null alleles, their impact on F(ST) and genetic distances, and the efficiency of estimators of null allele frequency. Further, we explored how the existing method for correcting genotype data for null alleles performed in estimating F(ST) and genetic distances, and we compared this method with a new method proposed here (for F(ST) only). Null alleles were likely to be encountered in populations with a large effective size, with an unusually high mutation rate in the flanking regions, and that have diverged from the population from which the cloned allele state was drawn and the primers designed. When populations were significantly differentiated, F(ST) and genetic distances were overestimated in the presence of null alleles. Frequency of null alleles was estimated precisely with the algorithm presented in Dempster et al. (1977). The conventional method for correcting genotype data for null alleles did not provide an accurate estimate of F(ST) and genetic distances. However, the use of the genetic distance of Cavalli-Sforza and Edwards (1967) corrected by the conventional method gave better estimates than those obtained without correction. F(ST) estimation from corrected genotype frequencies performed well when restricted to visible allele sizes. Both the proposed method and the traditional correction method have been implemented in a program that is available free of charge at http://www.montpellier.inra.fr/URLB/. We used 2 published microsatellite data sets based on original and redesigned pairs of primers to empirically confirm our simulation results.  相似文献   

5.
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.  相似文献   

6.
Mutikainen P  Koskela T 《Heredity》2002,89(4):318-324
Characterization of host and parasite population genetic structure and estimation of gene flow among populations are essential for the understanding of parasite local adaptation and coevolutionary interactions between hosts and parasites. We examined two aspects of population structure in a parasitic plant, the greater dodder (Cuscuta europaea) and its host plant, the stinging nettle (Urtica dioica), using allozyme data from 12 host and eight parasite populations. First, we examined whether hosts exposed to parasitism in the past contain higher levels of genetic variation. Second, we examined whether host and parasite populations differ in terms of population structure and if their population structures are correlated. There was no evidence that host populations differed in terms of gene diversity or heterozygosity according to their history of parasitism. Host populations were genetically more differentiated (F(ST) = 0.032) than parasite populations (F(ST) = 0.009). Based on these F(ST) values, gene flow was high for both host and parasite. Such high levels of gene flow could counteract selection for local adaptation of the parasite. We found no significant correlation between geographic and genetic distance (estimated as pairwise F(ST)), either for the host or for the parasite. Furthermore, host and parasite genetic distance matrices were uncorrelated, suggesting that sites with genetically similar host populations are unlikely to have genetically similar parasite populations.  相似文献   

7.
Estimates of genetic diversity in major geographic regions are frequently made by pooling all individuals into regional aggregates. This method can potentially bias results if there are differences in population substructure within regions, since increased variation among local populations could inflate regional diversity. A preferred method of estimating regional diversity is to compute the mean diversity within local populations. Both methods are applied to a global sample of craniometric data consisting of 57 measurements taken on 1734 crania from 18 local populations in six geographic regions: sub-Saharan Africa, Europe, East Asia, Australasia, Polynesia, and the Americas. Each region is represented by three local populations. Both methods for estimating regional diversity show sub-Saharan Africa to have the highest levels of phenotypic variation, consistent with many genetic studies. Polynesia and the Americas both show high levels of regional diversity when regional aggregates are used, but the lowest mean local population diversity. Regional estimates of F(ST) made using quantitative genetic methods show that both Polynesia and the Americas also have the highest levels of differentiation among local populations, which inflates regional diversity. Regional differences in F(ST) are directly related to the geographic dispersion of samples within each region; higher F(ST) values occur when the local populations are geographically dispersed. These results show that geographic sampling can affect results, and suggest caution in making inferences regarding regional diversity when population substructure is ignored.  相似文献   

8.
Manier MK  Arnold SJ 《Molecular ecology》2005,14(13):3965-3976
Population genetic structure can be shaped by multiple ecological and evolutionary factors, but the genetic consequences of these factors for multiple species inhabiting the same environment remain unexplored. We used microsatellite markers to examine the population structures of two coexisting species of garter snake, Thamnophis elegans and Thamnophis sirtalis, to determine if shared landscape and biology imposed similar population genetic structures. These snakes inhabit a series of ponds, lakes and flooded meadows in northern California and tend to converge on prey type wherever they coexist. Both garter snakes had comparable effective population sizes and bidirectional migration rates (estimated using a maximum-likelihood method based on the coalescent) with low but significant levels of genetic differentiation (F(ST) = 0.024 for T. elegans and 0.035 for T. sirtalis). Asymmetrical gene flow revealed large source populations for both species as well as potential sinks, suggesting frequent extinction-recolonization and metapopulation dynamics. In addition, we found a significant correlation between their genetic structures based on both pairwise F(ST)s for shared populations (P = 0.009) and for bidirectional migration rates (P = 0.024). Possible ecological and evolutionary factors influencing similarities and differences in genetic structure for the two species are discussed. Genetic measures of effective population size and migration rates obtained in this study are also compared with estimates obtained from mark-recapture data.  相似文献   

9.
地理因素对植物天然居群的物种分布和种内分化具有重要影响。该研究通过对箭竹复合体内39个居群的14对SSR数据进行深入分析,旨在揭示重要地理因素(如海拔、纬度、地理距离)对该复合体内遗传多样性和遗传分化式样的影响。结果表明:(1)糙花箭竹亚支系遗传多样性最高(H_e=0.50),而团竹亚支系的遗传多样性最低(H_e=0.33)。(2)遗传多样性与纬度、海拔在A、B两个支系水平呈显著正相关关系,但在亚支系水平,遗传多样性的变化趋势呈现出更为复杂的局面,部分支系表现为负相关关系,推测纬度和海拔对箭竹复合体内遗传多样性水平具有一定影响,但也需重视其他进化因素的作用。(3)Mantel检验显示,仅在团竹亚支系中检测出较弱的正相关关系,表明地理距离不是影响箭竹复合体内遗传分化的主导因素,后续需结合基因流检测推断杂交事件对其遗传分化的影响。  相似文献   

10.
Understanding patterns of genetic structure is fundamental for developing successful management programmes for deme‐structured organisms, such as amphibians. We used five microsatellite loci and DNA sequences of the mitochondrial control region to assess the relative influences of landscape (geographic distance, altitude and rivers as corridors for dispersal) and historical factors on patterns of gene flow in populations of the toad Bufo bufo in Central Spain. We sampled 175 individuals from eight populations distributed along two major river drainages and used maximum‐likelihood and Bayesian approaches to infer patterns of gene flow and population structure. The mitochondrial DNA data show closely‐related haplotypes distributed across the Iberian Peninsula with no geographic structuring, suggesting recent differentiation of haplotypes and extensive gene flow between populations. On the other hand, microsatellites provide finer resolution, showing that high altitude populations (> 2000 m) exchange lower numbers of migrants with other populations. The results of Bayesian estimates for recent migration rates in high altitude populations suggest source‐sink dynamics between ponds that are consistent with independent data from monitoring over the past 20 years. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 824–839.  相似文献   

11.
The existence and mode of selection operating on heritable adaptive traits can be inferred by comparing population differentiation in neutral genetic variation between populations (often using F(ST) values) with the corresponding estimates for adaptive traits. Such comparisons indicate if selection acts in a diversifying way between populations, in which case differentiation in selected traits is expected to exceed differentiation in neutral markers [F(ST )(selected) > F(ST )(neutral)], or if negative frequency-dependent selection maintains genetic polymorphisms and pulls populations towards a common stable equilibrium [F(ST) (selected) < F(ST) (neutral)]. Here, we compared F(ST) values for putatively neutral data (obtained using amplified fragment length polymorphism) with estimates of differentiation in morph frequencies in the colour-polymorphic damselfly Ischnura elegans. We found that in the first year (2000), population differentiation in morph frequencies was significantly greater than differentiation in neutral loci, while in 2002 (only 2 years and 2 generations later), population differentiation in morph frequencies had decreased to a level significantly lower than differentiation in neutral loci. Genetic drift as an explanation for population differentiation in morph frequencies could thus be rejected in both years. These results indicate that the type and/or strength of selection on morph frequencies in this system can change substantially between years. We suggest that an approach to a common equilibrium morph frequency across all populations, driven by negative frequency-dependent selection, is the cause of these temporal changes. We conclude that inferences about selection obtained by comparing F(ST) values from neutral and adaptive genetic variation are most useful when spatial and temporal data are available from several populations and time points and when such information is combined with other ecological sources of data.  相似文献   

12.
Hardy OJ  Charbonnel N  Fréville H  Heuertz M 《Genetics》2003,163(4):1467-1482
The mutation process at microsatellite loci typically occurs at high rates and with stepwise changes in allele sizes, features that may introduce bias when using classical measures of population differentiation based on allele identity (e.g., F(ST), Nei's Ds genetic distance). Allele size-based measures of differentiation, assuming a stepwise mutation process [e.g., Slatkin's R(ST), Goldstein et al.'s (deltamu)(2)], may better reflect differentiation at microsatellite loci, but they suffer high sampling variance. The relative efficiency of allele size- vs. allele identity-based statistics depends on the relative contributions of mutations vs. drift to population differentiation. We present a simple test based on a randomization procedure of allele sizes to determine whether stepwise-like mutations contributed to genetic differentiation. This test can be applied to any microsatellite data set designed to assess population differentiation and can be interpreted as testing whether F(ST) = R(ST). Computer simulations show that the test efficiently identifies which of F(ST) or R(ST) estimates has the lowest mean square error. A significant test, implying that R(ST) performs better than F(ST), is obtained when the mutation rate, mu, for a stepwise mutation process is (a) >/= m in an island model (m being the migration rate among populations) or (b) >/= 1/t in the case of isolated populations (t being the number of generations since population divergence). The test also informs on the efficiency of other statistics used in phylogenetical reconstruction [e.g., Ds and (deltamu)(2)], a nonsignificant test meaning that allele identity-based statistics perform better than allele size-based ones. This test can also provide insights into the evolutionary history of populations, revealing, for example, phylogeographic patterns, as illustrated by applying it on three published data sets.  相似文献   

13.
We describe a method for making inferences about the factors that influence colonization processes in natural populations. We consider the general situation where we have genetic data from a newly colonized population and also from I source populations that may have contributed individuals to the founding group that established the new population. The model assumes that p (biotic/abiotic) factors, G(1), ... ,G(p) may have influenced some individuals in some of the source populations to find a new habitat patch where they could establish a new population. The aim of the method is to determine the composition of the founding group and to ascertain if the aforementioned factors have indeed played a role in the colonization event. We investigate the performance of our method using simulated data sets and illustrate its application with data from the grey seal Halichoerus grypus. These applications demonstrate that the method can identify accurately those factors that are most important for the founding of new populations. This is the case even when genetic differentiation among source populations is low. The estimates of the contribution that each source population makes to the founding groups is somewhat sensitive to the degree of genetic differentiation but it is still possible to identify the sources that are the main contributors to the founding group, even when genetic differentiation is low (F(ST) = 0.01).  相似文献   

14.
Genetic differentiation between natural populations is best understood as a result of both natural and anthropogenic factors. Genetic studies on large populations still living under relatively undisturbed conditions are extremely valuable to disentangle these influences. The effect of three natural (geographic distance, landscape, dispersal) factors and two anthropogenic factors (road, savannah) on gene flow was analyzed in the largest remaining forest region in the range of the endangered golden-brown mouse lemur in Madagascar. A total of 187 individuals from 12 sites were sampled and genotyped at eight polymorphic microsatellite loci. All sites exhibited similar levels of genetic variation. The level of genetic differentiation was low to moderate with pairwise F(ST) values ranging from -0.002 to 0.12, but most were significant and all sites exhibited high self-assignment rates. A spatial autocorrelation analysis was performed at two geographic scales revealing a pattern of isolation-by-distance and suggesting that no clear differences exist between male and female local dispersal. Two Bayesian approaches revealed that a stretch of savannah represented a significant barrier to movement, whereas the influence of the road on gene flow was less clear. Finally, we found that landscape characteristics, in particular altitude, play a role in the functional connectivity of the sites. The study underlines the importance of studies in relatively undisturbed conditions for the interpretation of population genetics data in fragmented environments. The results are discussed in terms of their conservation relevance for forest-dwelling animals such as most primate species.  相似文献   

15.
Toda M  Hikida T  Okada S  Ota H 《Heredity》2003,90(1):90-97
Allozyme variation in two congeneric sympatric geckos, Gekko tawaensis and G. japonicus, from western Japan was examined. These species show similar densities and spatial arrangements of populations in this region, and their genetic structures are thus expected to have been formed under the influences of comparable geohistorical, environmental, and demographic factors. Results of the analyses, however, revealed strikingly different genetic patterns in the two species. Populations of G. tawaensis invariably showed a remarkably lowered heterozygosity (0-0.017) compared to G. japonicus (0.089-0.124). On the other hand, the genetic heterogeneity among populations is much greater in G. tawaensis (F(ST)=0.726) than in G. japonicus (F(ST)=0.101). The Mantel test failed to detect any significant correlations between log (estimated migration rate) and log (geographic distance) in either species, or between matrices of interpopulation pairwise F(ST) for the two species. These results suggest that, in each species, formation of the current genetic structure in western Japan has been chiefly influenced by stochastic factors, rather than the geohistorical architecture of this region. The high F(ST) and low heterozygosity in G. tawaensis suggest the effects of severe local fragmentation. On the other hand, the relatively low F(ST) and high heterozygosity in G. japonicus imply extensive gene flow among populations. Absence of significant correlations between the estimated migration rate and geographic distance in G. japonicus may suggest that such gene flow is promoted by human-mediated transport of this primarily house-dwelling lizard.  相似文献   

16.
Microevolutionary responses to spatial variation in the environment seem ubiquitous, but the relative role of selection and neutral processes in driving phenotypic diversification remain often unknown. The moor frog (Rana arvalis) shows strong phenotypic divergence along an acidification gradient in Sweden. We here used correlations among population pairwise estimates of quantitative trait (P(ST) or Q(ST) from common garden estimates of embryonic acid tolerance and larval life-history traits) and neutral genetic divergence (F(ST) from neutral microsatellite markers), as well as environmental differences (pond pH, predator density, and latitude), to test whether this phenotypic divergence is more likely due to divergent selection or neutral processes. We found that trait divergence was more strongly correlated with environmental differences than the neutral marker divergence, suggesting that divergent natural selection has driven phenotypic divergence along the acidification gradient. Moreover, pairwise P(ST) s of embryonic acid tolerance and Q(ST) s of metamorphic size were strongly correlated with breeding pond pH, whereas pairwise Q(ST) s of larval period and growth rate were more strongly correlated with geographic distance/latitude and predator density, respectively. We suggest that incorporating measurements of environmental variation into Q(ST) -F(ST) studies can improve our inferential power about the agents of natural selection in natural populations.  相似文献   

17.
Lin J  Quinn TP  Hilborn R  Hauser L 《Heredity》2008,101(4):341-350
A long-standing goal of evolutionary biology is to understand the factors that drive population divergence, local adaptation and speciation. In particular, the effect of selection against dispersers on gene flow and local adaptation has attracted interest, although empirical data on phenotypic characters of dispersers are scarce. Here, we used genetic and phenotypic data from beach and creek ecotypes of sockeye salmon (Oncorhynchus nerka) in Little Togiak Lake, Alaska, to examine the relationship between gene flow and phenotypic and genetic differentiation. Despite close geographic proximity, both genetic and phenotypic differentiation between beach and creek fish was high and significant in all sampling years, with beach males having deeper bodies than creek males. Strays, or fish that did not return to their natal sites to spawn as determined by genetic assignment, tended to morphologically resemble the fish in the population that they joined. Male strays from beaches to creeks were shallower bodied than other beach fish, and male strays from creeks to beaches were deeper bodied than other creek males. Our results indicated that selection against strays may be moderated by the strays' phenotypic similarity to individuals in the recipient populations, but comparison of assignment results with long-term estimates of gene flow from F(ST) still suggested that strays had low reproductive success.  相似文献   

18.
The randomly amplified polymorphic DNA technique was used to trace the geographic origin of Liposcelis bostrychophila Badonnel populations in Australia from unknown geographic sources internationally. Haplotype (or clonal) diversity was high, with 474 unique haplotypes found from 616 individuals genotyped. Gene diversity estimates (0.10-0.28) and percent polymorphic loci (38.1-88.1%) were moderate to high for most populations. This resulted in genetic distance estimates that ranged from 0.04 to 0.26 and were significantly different for most pairwise population combinations. G ST values for all populations were also moderate (0.04-0.54) and again were significantly different for most pairwise population comparisons. Analysis of molecular variance revealed that the majority of variation was apportioned among individuals within populations regardless of the level at which they were grouped. Gene flow (Nm) was mostly low for all pairwise populations comparisons with an average Nm=1.8. A non-significant negative correlation between genetic distance and geographic distance was found for worldwide populations. In contrast, within Australian populations a significant positive correlation between genetic distance and geographic distance was detected. Genetic relationships explored using unweighted pair group method analysis and non-metric multidimensional scaling indicated a mixed pattern of genetic similarities among all populations. Multiple introductions, from a wide range of international source populations, have obscured the ability to accurately determine the geographic origin of L. bostrychophila in Australia.  相似文献   

19.
An understanding of the relative roles of historical and contemporary factors in structuring genetic variation is a fundamental, but understudied aspect of geographic variation. We examined geographic variation in microsatellite DNA allele frequencies in bull trout (Salvelinus confluentus, Salmonidae) to test hypotheses concerning the relative roles of postglacial dispersal (historical) and current landscape features (contemporary) in structuring genetic variability and population differentiation. Bull trout exhibit relatively low intrapopulation microsatellite variation (average of 1.9 alleles per locus, average He = 0.24), but high levels of interpopulation divergence (F(ST) = 0.39). We found evidence of historical influences on microsatellite variation in the form of a decrease in the number of alleles and heterozygosities in populations on the periphery of the range relative to populations closer to putative glacial refugia. In addition, one region of British Columbia that was colonized later during deglaciation and by more indirect watershed connections showed less developed and more variable patterns of isolation by distance than a similar region colonized earlier and more directly from refugia. Current spatial and drainage interconnectedness among sites and the presence of migration barriers (falls and cascades) within individual streams were found to be important contemporary factors influencing historical patterns of genetic variability and interpopulation divergence. Our work illustrates the limited utility of equilibrium models to delineate population structure and patterns of genetic diversity in recently founded populations or those inhabiting highly heterogeneous environments, and it highlights the need for approaches incorporating a landscape context for population divergence. Substantial microsatellite DNA divergence among bull trout populations may also signal divergence in traits important to population persistence in specific environments.  相似文献   

20.
The distribution of a species is a complex expression of its ecological and evolutionary history and integrating population genetic, environmental, and ecological data can provide new insights into the effects of the environment on the population structure of species. Previous work demonstrated strong patterns of genetic differentiation in natural populations of the hermaphroditic nematode Pristionchus pacificus in its La Réunion Island habitat, but gave no clear understanding of the role of the environment in structuring this variation. Here, we present what is to our knowledge the first study to statistically evaluate the role of the environment in shaping the structure and distribution of nematode populations. We test the hypothesis that genetic structure in P. pacificus is influenced by environmental variables, by combining population genetic analyses of microsatellite data from 18 populations and 370 strains, with multivariate statistics on environmental data, and species distribution modelling. We assess and quantify the relative importance of environmental factors (geographic distance, altitude, temperature, precipitation, and beetle host) on genetic variation among populations. Despite the fact that geographic populations of P. pacificus comprise vast genetic diversity sourced from multiple ancestral lineages, we find strong evidence for local associations between environment and genetic variation. Further, we show that significantly more genetic variation in P. pacificus populations is explained by environmental variation than by geographic distances. This supports a strong role for environmental heterogeneity vs. genetic drift in the divergence of populations, which we suggest may be influenced by adaptive forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号