首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised.  相似文献   

2.
Dormant spores of the marine Bacillus sp. strain SG-1 catalyze the oxidation of manganese(II), thereby becoming encrusted with insoluble Mn(III,IV) oxides. In this study, it was found that the Mn(II)-oxidizing activity could be removed from SG-1 spores using a French press and recovered in the supernatant following centrifugation of the spores. Transmission electron microscopy of thin sections of SG-1 spores revealed that the ridged outermost layer was removed by passage through the French press, leaving the remainder of the spore intact. Comparative chemical analysis of this layer with the underlying spore coats suggested that this outer layer is chemically distinct from the spore coat. Taken together, these results indicate that this outer layer is an exosporium. Previous genetic analysis of strain SG-1 identified a cluster of genes involved in Mn(II) oxidation, the mnx genes. The product of the most downstream gene in this cluster, MnxG, appears to be a multicopper oxidase and is essential for Mn(II) oxidation. In this study, MnxG was overexpressed in Escherichia coli and used to generate polyclonal antibodies. Western blot analysis demonstrated that MnxG is localized to the exosporium of wild-type spores but is absent in the non-oxidizing spores of transposon mutants within the mnx gene cluster. To our knowledge, Mn(II) oxidation is the first oxidase activity, and MnxG one of the first gene products, ever shown to be associated with an exosporium.  相似文献   

3.
Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised.  相似文献   

4.
Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.  相似文献   

5.
Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.  相似文献   

6.
Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.  相似文献   

7.
Mature spores of the marine Bacillus sp. strain SG-1 bind and oxidize manganese(II), thereby becoming encrusted with a manganese(IV) oxide. Both the function and mechanism of this oxidation are unknown, although evidence suggests that spore coat proteins are involved. To further study this phenomenon, methods of genetic analysis were developed for SG-1. By a modified protoplast transformation procedure, SG-1 was transformed (approximately 100 transformants per micrograms of DNA) with several different plasmids of gram-positive origin. Transposon Tn917, delivered on the temperature-sensitive plasmid pLTV1, was used to generate mutants of SG-1. Conditions were established that allowed 98% plasmid loss and insertions to be recovered at a frequency of 10(-3). Each mutant was found to be the result of a single insertion event. Restriction analysis of 27 mutants that do not oxidize manganese but still sporulate localized 17 of the insertions within two regions of the chromosome (termed Mnx regions), and a physical map of these regions was generated. Analysis of 18 transposon integrants in which manganese oxidation was unaffected revealed random transposon integration, with none of their insertions mapping within the Mnx regions. The Mnx regions were cloned from wild-type SG-1, and the largest region, carried on the lactococcal plasmid pGK13, was used to complement in trans one of the nonoxidizing mutants. These results demonstrate that the Mnx regions encode factors that are required for the oxidation of manganese, and this represents the first report identifying genes involved in bacterial manganese oxidation.  相似文献   

8.
The geochemical cycling of cobalt (Co) has often been considered to be controlled by the scavenging and oxidation of Co(II) on the surface of manganese [Mn(III,IV)] oxides or manganates. Because Mn(II) oxidation in the environment is often catalyzed by bacteria, we have investigated the ability of Mn(II)-oxidizing bacteria to bind and oxidize Co(II) in the absence of Mn(II) to determine whether some Mn(II)-oxidizing bacteria also oxidize Co(II) independently of Mn oxidation. We used the marine Bacillus sp. strain SG-1, which produces mature spores that oxidize Mn(II), apparently due to a protein in their spore coats (R.A. Rosson and K. H. Nealson, J. Bacteriol. 151:1027-1034, 1982; J. P. M. de Vrind et al., Appl. Environ. Microbiol. 52:1096-1100, 1986). A method to measure Co(II) oxidation using radioactive 57Co as a tracer and treatments with nonradioactive (cold) Co(II) and ascorbate to discriminate bound Co from oxidized Co was developed. SG-1 spores were found to oxidize Co(II) over a wide range of pH, temperature, and Co(II) concentration. Leucoberbelin blue, a reagent that reacts with Mn(III,IV) oxides forming a blue color, was found to also react with Co(III) oxides and was used to verify the presence of oxidized Co in the absence of added Mn(II). Co(II) oxidation occurred optimally around pH 8 and between 55 and 65°C. SG-1 spores oxidized Co(II) at all Co(II) concentrations tested from the trace levels found in seawater to 100 mM. Co(II) oxidation was found to follow Michaelis-Menten kinetics. An Eadie-Hofstee plot of the data suggests that SG-1 spores have two oxidation systems, a high-affinity-low-rate system (Km, 3.3 × 10-8 M; Vmax, 1.7 × 10-15 M · spore-1 · h-1) and a low-affinity-high-rate system (Km, 5.2 × 10-6 M; Vmax, 8.9 × 10-15 M · spore-1 · h-1). SG-1 spores did not oxidize Co(II) in the absence of oxygen, also indicating that oxidation was not due to abiological Co(II) oxidation on the surface of preformed Mn(III,IV) oxides. These results suggest that some microorganisms may directly oxidize Co(II) and such biological activities may exert some control on the behavior of Co in nature. SG-1 spores may also have useful applications in metal removal, recovery, and immobilization processes.  相似文献   

9.
Spores of marine Bacillus sp. strain SG-1 are capable of oxidizing Mn(II) and Co(II), which results in the precipitation of Mn(III, IV) and Co(III) oxides and hydroxides on the spore surface. The spores also bind other heavy metals; however, little is known about the mechanism and capacity of this metal binding. In this study the characteristics of the spore surface and Cu(II) adsorption to this surface were investigated. The specific surface area of wet SG-1 spores was 74.7 m2 per g of dry weight as measured by the methylene blue adsorption method. This surface area is 11-fold greater than the surface area of dried spores, as determined with an N2 adsorption surface area analyzer or as calculated from the spore dimensions, suggesting that the spore surface is porous. The surface exchange capacity as measured by the proton exchange method was found to be 30.6 μmol m−2, which is equal to a surface site density of 18.3 sites nm−2. The SG-1 spore surface charge characteristics were obtained from acid-base titration data. The surface charge density varied with pH, and the zero point of charge was pH 4.5. The titration curves suggest that the spore surface is dominated by negatively charged sites that are largely carboxylate groups but also phosphate groups. Copper adsorption by SG-1 spores was rapid and complete within minutes. The spores exhibited a high affinity for Cu(II). The amounts of copper adsorbed increased from negligible at pH 3 to maximum levels at pH >6. Their great surface area, site density, and affinity give SG-1 spores a high capability for binding metals on their surfaces, as demonstrated by our experiments with Cu(II).  相似文献   

10.
Manganese(II)-oxidizing bacteria play an integral role in the cycling of Mn as well as other metals and organics. Prior work with Mn(II)-oxidizing bacteria suggested that Mn(II) oxidation involves a multicopper oxidase, but whether this enzyme directly catalyzes Mn(II) oxidation is unknown. For a clearer understanding of Mn(II) oxidation, we have undertaken biochemical studies in the model marine α-proteobacterium, Erythrobacter sp. strain SD21. The optimum pH for Mn(II)-oxidizing activity was 8.0 with a specific activity of 2.5 nmol × min−1 × mg−1 and a K m = 204 μM. The activity was soluble suggesting a cytoplasmic or periplasmic protein. Mn(III) was an intermediate in the oxidation of Mn(II) and likely the primary product of enzymatic oxidation. The activity was stimulated by pyrroloquinoline quinone (PQQ), NAD+, and calcium but not by copper. In addition, PQQ rescued Pseudomonas putida MnB1 non Mn(II)-oxidizing mutants with insertions in the anthranilate synthase gene. The substrate and product of anthranilate synthase are intermediates in various quinone biosyntheses. Partially purified Mn(II) oxidase was enriched in quinones and had a UV/VIS absorption spectrum similar to a known quinone requiring enzyme but not to multicopper oxidases. These studies suggest that quinones may play an integral role in bacterial Mn(II) oxidation.  相似文献   

11.

Natural manganese oxide nanoparticles and grain coatings profoundly impact contaminant cycling in the environment through their ability to degrade organic compounds and sequester metal ions. Previous studies of biogenic manganese oxides have shown that the interlayer cation may have an important effect on the resulting oxide structure. The effect of Na and Ca ions was investigated to determine their fundamental roles in the stabilization of the phyllomanganate biooxide structure, its unit cell symmetry, and order/disorder relations. Biogenic oxides were created by incubating Mn(II) with spores of the marine Bacillus sp., strain SG-1 and the resulting oxide structures examined using X-ray absorption spectroscopy and X-ray diffraction to determine the short-range and long-range atomic structure. Phyllomanganates were observed exclusively, with differing degrees of layer stacking disorder, degree of crystallinity, and layer symmetry, depending on the cation present. In general, Ca was found to promote biooxide long-range order. We conclude that the presence of Ca in these oxides will confer greater stability to these bacteriogenic manganese bioxodes.  相似文献   

12.
The marine Bacillus sp. strain SG-1 forms spores that oxidize manganese(II) as a result of the activities of uncharacterized components of its spore coat. Nucleotide sequence analysis of chromosomal loci previously identified through insertion mutagenesis as being involved in manganese oxidation identified seven possible genes (designated mnxA to mnxG) in what appears to be an operon. A potential recognition site for the sporulation, mother-cell-specific, RNA polymerase sigma factor, sigmaK, was located just upstream of the cluster, and correspondingly, measurement of beta-galactosidase activity from a Tn917-lacZ insertion in mnxD showed expression at mid-sporulation to late sporulation (approximately stage IV to V of sporulation). Spores of nonoxidizing mutants appeared unaffected with respect to their temperature and chemical resistance properties and germination characteristics. However, transmission electron microscopy revealed alterations in the outermost spore coat. This suggests that products of these genes may be involved in the deposition of the spore coat structure and/or are spore coat proteins themselves. Regions of the deduced protein product of mnxG showed amino acid sequence similarity to the family of multicopper oxidases, a diverse group of proteins that use multiple copper ions to oxidize a variety of substrates. Similar regions included those that are involved in binding of copper, and the addition of copper at a low concentration was found to enhance manganese oxidation by the spores. This suggests that the product of this gene may function like a copper oxidase and that it may be directly responsible for the oxidation of manganese by the spores.  相似文献   

13.
Following sample collection and screening at a number of Mn-associated mine sites in Northern Australia, a microbial strain was selected for its enhanced rate of Mn uptake. The strain was identified by phylogenetic analysis as a Rhizobium sp. Kinetic studies of Mn(II) uptake and oxidation by this strain in glucose-based media established that the uptake of Mn(II) was much greater than the conversion of Mn(II) to Mn oxide. Chemical analysis and scanning electron microscopy confirmed the production of significant amounts of polysaccharides by this strain. These polysaccharides may play a role both in enhancing Mn(II) accumulation and in minimizing Mn oxide production.  相似文献   

14.
Microbial Mn(II) oxidation has important biogeochemical consequences in marine, freshwater, and terrestrial environments, but many aspects of the physiology and biochemistry of this process remain obscure. Here, we report genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1, isolated from the oxic/anoxic interface of a stratified fjord. The SI85-9A1 genome harbors the genetic potential for metabolic versatility, with genes for organoheterotrophy, methylotrophy, oxidation of sulfur and carbon monoxide, the ability to grow over a wide range of O(2) concentrations (including microaerobic conditions), and the complete Calvin cycle for carbon fixation. Although no growth could be detected under autotrophic conditions with Mn(II) as the sole electron donor, cultures of SI85-9A1 grown on glycerol are dramatically stimulated by addition of Mn(II), suggesting an energetic benefit from Mn(II) oxidation. A putative Mn(II) oxidase is encoded by duplicated multicopper oxidase genes that have a complex evolutionary history including multiple gene duplication, loss, and ancient horizontal transfer events. The Mn(II) oxidase was most abundant in the extracellular fraction, where it cooccurs with a putative hemolysin-type Ca(2+)-binding peroxidase. Regulatory elements governing the cellular response to Fe and Mn concentration were identified, and 39 targets of these regulators were detected. The putative Mn(II) oxidase genes were not among the predicted targets, indicating that regulation of Mn(II) oxidation is controlled by other factors yet to be identified. Overall, our results provide novel insights into the physiology and biochemistry of Mn(II) oxidation and reveal a genome specialized for life at the oxic/anoxic interface.  相似文献   

15.
Bacterial manganese(II) oxidation has a profound impact on the biogeochemical cycling of Mn and the availability of the trace metals adsorbed to the surfaces of solid Mn(III, IV) oxides. The Mn(II) oxidase enzyme was tentatively identified in Pseudomonas putida GB-1 via transposon mutagenesis: the mutant strain GB-1-007, which fails to oxidize Mn(II), harbors a transposon insertion in the gene cumA. cumA encodes a putative multicopper oxidase (MCO), a class of enzymes implicated in Mn(II) oxidation in other bacterial species. However, we show here that an in-frame deletion of cumA did not affect Mn(II) oxidation. Through complementation analysis of the oxidation defect in GB-1-007 with a cosmid library and subsequent sequencing of candidate genes we show the causative mutation to be a frameshift within the mnxS1 gene that encodes a putative sensor histidine kinase. The frameshift mutation results in a truncated protein lacking the kinase domain. Multicopy expression of mnxS1 restored Mn(II) oxidation to GB-1-007 and in-frame deletion of mnxS1 resulted in a loss of oxidation in the wild-type strain. These results clearly demonstrated that the oxidation defect of GB-1-007 is due to disruption of mnxS1, not cumA::Tn5, and that CumA is not the Mn(II) oxidase. mnxS1 is located upstream of a second sensor histidine kinase gene, mnxS2, and a response regulator gene, mnxR. In-frame deletions of each of these genes also led to the loss of Mn(II) oxidation. Therefore, we conclude that the MnxS1/MnxS2/MnxR two-component regulatory pathway is essential for Mn(II) oxidation in P. putida GB-1.In living cells, manganese (Mn) is an essential trace element, required for enzymes such as superoxide dismutase and in photosystem II (7). In the environment, Mn cycles between a soluble reduced form [Mn(II)] and an insoluble oxidized form [Mn(III, IV)] that can adsorb other trace metals from the environment and serve as potent oxidizing agents. Thus, redox cycling of Mn has a profound effect on the bioavailability and geochemical cycling of many essential or toxic elements (40). Microorganisms, particularly bacteria, are capable of catalyzing the oxidation of Mn(II), thereby increasing the rate of formation of Mn(III, IV) by several orders of magnitude (39). Since Mn(III, IV) oxides are able to bind trace metals, the bacteria that catalyze their formation are good candidates for bioremediation of heavy metal contaminated sites (26, 39).Although bacterial Mn(II) oxidation is widespread, little is known about the physiological function of oxidation (40). The oxidation of Mn(II) to Mn(III) or Mn(IV) is thermodynamically favorable; thus, bacteria may derive energy from this reaction, although this has never been unequivocally proven (40). In addition, Mn(II) oxidation could protect cells from reactive oxygen species (4) or UV irradiation (11). Since oxidation occurs on the cell surface, the bacteria become coated with the solid Mn(IV) oxides, which may also provide protection from toxic heavy metals, predation, or phage infection (40). As a strong oxidant, Mn(IV) oxides could allow the bacteria to degrade refractory organic matter to low-molecular-weight compounds that could then be used to support bacterial growth (38). Conversely, Mn(II) oxidation may be a side reaction or the result of nonspecific interactions with cellular products (15). Identifying signals or conditions that regulate oxidation could provide some insight into the role of Mn(II) oxidation in the cell. Aside from a requirement for oxygen (28) and iron (27, 30), as well as the observation that oxidation occurs in stationary phase (23), very little is known about this regulation.The enzymes responsible for Mn(II) oxidation have been tentatively identified from some species of bacteria and in several cases the enzyme is a putative multicopper oxidase (MCO). MCOs are a family of enzymes that use four Cu ion cofactors to catalyze oxidation of diverse substrates such as metals and organic compounds (33). This family of enzymes is found in plants and fungi (laccase) and humans (ceruloplasmin), as well as in bacteria (35). Some fungi have been shown to use a laccase enzyme to oxidize Mn(II) (20). In both Leptothrix discophora SS-1 and Pedomicrobium sp. strain ACM 3067, the Mn(II)-oxidizing MCO was identified genetically (mofA [10] and moxA [31], respectively). A third MCO—MnxG—was identified both biochemically and genetically as the Mn(II) oxidase in Bacillus sp. strain SG-1 and related strains (14, 43). Recent work with the Mn(II)-oxidizing alphaproteobacterium Aurantimonas manganoxydans SI85-9A1 and Erythrobacter sp. strain SD21 has identified a second class of enzyme involved in Mn(II) oxidation: the heme-binding peroxidase named MopA (3). This class of enzyme had previously been shown to be used by fungi to oxidize Mn(II) (29), in some cases in concert with an MCO (34).Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium (9) whose genetic tractability and ease of growth under standard laboratory conditions make it an ideal model system for studying the physiology and mechanism of Mn(II) oxidation. Consequently, several random transposon mutagenesis screens have been undertaken with this organism to identify genes required for Mn(II) oxidation. These screens have identified several categories of genes as important for oxidation or the export of the oxidase to the cell surface: the ccm operon of c-type cytochrome synthesis genes (8, 13), genes encoding components of the trichloroacetic acid (TCA) cycle and the tryptophan biosynthesis pathway (8) and genes encoding a general secretory pathway (12). The Mn(II) oxidation-defective mutant GB-1-007 has a transposon insertion in the gene cumA that encodes a putative MCO (6). Therefore, P. putida GB-1 has been thought to use a similar mechanism as L. discophora SS-1, Pedomicrobium sp. strain ACM 3067, and Bacillus sp. to oxidize Mn(II).Because the available data suggested that CumA was an MCO essential for Mn(II) oxidation, we wanted to study its function in greater detail. We were hampered in this, however, by the fact that the transposon insertion in cumA resulted in a growth defect due to its polar effect on expression of the downstream cumB gene (6). In order to assess the role of CumA in Mn(II) oxidation without the complications arising from polarity, we generated an in-frame deletion of cumA and tested the ability of the resulting ΔcumA strain to form Mn(IV) oxides. Our results showed that cumA is dispensable for Mn(II) oxidation and have instead revealed a complex two-component regulatory pathway essential for Mn(II) oxidation in P. putida GB-1.  相似文献   

16.
Manganese reduction by a marine Bacillus species.   总被引:5,自引:1,他引:4       下载免费PDF全文
Mature dormant spores of marine Bacillus sp. strain SG1 catalyze the oxidation of Mn(II) to MnO2. We report that vegetative cells of the same strain reduced MnO2 under low-oxygen conditions. The rate of reduction was a function of cell concentration. The process had a pH optimum of 7.5 to 8.0 and was inhibited by HgCl2, by preheating of the cells at 80 degrees C for 5 min, by antimycin A, and by N-heptyl-hydroxy-quinoline-N-oxide. At a nonlimiting O2 concentration, little MnO2 reduction was observed. Under these conditions, the process could be induced by the addition of NaN3. Spectrophotometric analysis of the Bacillus cells indicated the presence of type b and c cytochromes. Both types can be oxidized in situ by addition of MnO2 to the cells.  相似文献   

17.
Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.  相似文献   

18.
Marinobacter sp. MnI7-9, a deep-sea manganese [Mn(II)]-oxidizing bacterium isolated from the Indian Ocean, showed a high resistance to Mn(II) and other metals or metalloids and high Mn(II) oxidation/removal abilities. This strain was able to grow well when the Mn(II) concentration reached up to 10 mM, and at that concentration, 76.4% of the added Mn(II) was oxidized and 23.4% of the Mn(II) was adsorbed by the generated biogenic Mn oxides (total 99.9% Mn removal). Scanning electron microscope observation and X-ray diffraction analysis showed that the biogenic Mn oxides were in stick shapes, adhered to the cell surface, and contained two typical crystal structures of γ-MnOOH and δ-MnO2. In addition, the biogenic Mn oxides generated by strain MnI7-9 showed abilities to oxidize the highly toxic As(III) to the less toxic As(V), in both co-culture and after-collection systems. In the co-culture system containing 10 mM Mn(II) and 55 μM As(III), the maximum percentage of As(III) oxidation was 83.5%. In the after-collection system using the generated biogenic Mn oxides, 90% of the As(III) was oxidized into As(V), and the concentration of As(III) decreased from 55.02 to 5.55 μM. This study demonstrates the effective bioremediation by a deep-sea Mn(II)-oxidizing bacterium for the treatment of As-containing water and increases the knowledge of deep-sea bacterial Mn(II) oxidation mechanisms. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

19.
Bacillus subtilis is an aerobic spore-forming Gram-positive bacterium that is a model organism and of great industrial significance as the source of diverse novel functional molecules. Here we present, to our knowledge, the first genome sequence of Bacillus subtilis strain gtP20b isolated from the marine environment. A subset of candidate genes and gene clusters were identified, which are potentially involved in production of diverse functional molecules, like novel ribosomal and nonribosomal antimicrobial peptides. The genome sequence described in this paper is due to its high strain specificity of great importance for basic as well as applied researches on marine organisms.  相似文献   

20.
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号