首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In HEp-2 cells treated with 0.2 or 2.0 μM cytochalasin D (CD), the relative rate of actin synthesis increased for about 12 h and then reached a plateau; this increase was suppressed by actinomycin D (AD). When CD was washed from cells which had been treated for 20 h, the elevated rate of actin synthesis declined to the control value within ca 4 h, as the actin-containing cytoskeletal components rearranged by CD recovered their normal morphology. Subsequently, actin synthesis was depressed below control values for a prolonged period; during recovery from 2 h treatment with CD, this depression was of much shorter duration. Re-addition of CD to cells after a 3 h recovery period again induced the cytoskeletal alterations characteristic of CD treatment but did not reverse the prior decline in the rate of actin synthesis. In HEp-2 cells treated with cycloheximide during exposure to CD for 20 h, the relative rate of actin synthesis measured after removal of cycloheximide was twofold higher than with CD alone and such cells exhibited a twofold slower decline in the rate of actin synthesis during recovery from CD in the continued presence of cycloheximide. These effects of cycloheximide, which resemble observations on “super-induction”, suggest that actin synthesis in CD-treated and recovering HEp-2 cells may be regulated by a repressor protein. The possibility that the proposed repressor protein is actin and that actin may thus be a feedback inhibitor of its own synthesis is discussed.  相似文献   

2.
The most abundant proteins of HEp-2 cells were resolved by two-dimensional gel electrophoresis. The protein spots corresponding to several cytoskeletal proteins (vimentin, alpha-tubulin, beta-tubulin, alpha-actinin, tropomyosins, and cytokeratins) were identified by comigration with protein markers or by immunological techniques. After treatment of HEp-2 cells with 0.2 microM or 2.0 microM cytochalasin D for 20 h, radioautograms of two-dimensional gel patterns of lysates from cells pulse-labeled with [35S]methionine indicated that the drug altered the rate of synthesis of some proteins. The relative rate of synthesis of the identified cytoskeletal proteins was measured. Synthesis of alpha-actinin, the higher-molecular-mass pair of tropomyosins and actin were similarly increased with cytochalasin D treatment, suggesting coordinate induction. Vimentin and tubulin synthesis was depressed. One cytokeratin exhibited an increase in synthesis comparable to actin, another was increased to a lesser extent and one was decreased.  相似文献   

3.
Treatment of a variety of mesenchymal cells (normal and transformed rat fibroblasts, bovine aortic endothelial cells, rabbit smooth muscle cells), exhibiting different cytoskeletal organizations and derived from several species, with doses of cytochalasin D (CD, 2-6 microM for 20 h) sufficient to induce cytoskeletal rearrangement and altered cellular morphology results in an increase in the relative content and rate of synthesis of actin. These data extend our previous findings for HEp-2 cells to other cell types and provide further evidence for our hypothesis that the CD-induced cytoskeletal reorganization triggers stimulation of actin synthesis and the resulting increase in actin content.  相似文献   

4.
Previous studies have indicated that the effects of parathyroid hormone (PTH) on osteoblastic function involve alteration of cytoskeletal assembly. We have reported that after a transitory cell retraction, PTH induces respreading with stimulation of actin, vimentin and tubulins synthesis in mouse bone cells and that this effect is not mediated by cAMP. In order to further elucidate the role of intracellular cAMP and calcium on PTH action on bone cell shape and cytoskeleton we have compared the effects of calcium- and cAMP-enhancing factors on actin, tubulin and vimentin synthesis in relation with mouse bone cell morphology, DNA synthesis and alkaline phosphatase activity as a marker of differentiation. Confluent mouse osteoblastic cells were treated with 0.1 mM isobutylmethylxanthine (IBMX) for 24 h. This treatment caused an increase in the levels of cytoskeletal subunits associated with an elevation of cAMP. Under these conditions, PTH (20 nM) and forskolin (0.1 microM) produced persistent cytoplasmic retraction. PTH and forskolin treatment in presence of IBMX (24 h) induced inhibitory effects on actin and tubulin synthesis evaluated by [35S]methionine incorporation into cytoskeletal proteins identified on two-dimensional gel electrophoresis. Under these culture conditions PTH and forskolin also caused disassembly of microfilament and microtubules as shown by the marked reduction in Triton X soluble-actin and alpha- and beta-tubulins. In contrast, incubation of mouse bone cells with 1 microM calcium ionophore A23187 (24 h) resulted in increased monomeric and polymeric forms of actin and tubulin while not affecting intracellular cAMP. Alkaline phosphatase activity was increased in all conditions while DNA synthesis evaluated by [3H]thymidine incorporation into DNA was stimulated by PTH combined with forskolin and inhibited by the calcium ionophore. These data indicate that persistent elevation of cAMP levels induced by PTH and forskolin with IBMX cause cell retraction with actin and tubulin disassembly whereas rising cell calcium induces cytoskeletal protein assembly and synthesis in mouse osteoblasts. The results point to a distinct involvement of calcium and cAMP in both cytoskeletal assembly and DNA synthesis in mouse bone cells.  相似文献   

5.
Cytochalasin D (CD) was used to perturb actin filaments of the Sertoli ectoplasmic specialization (ES)--a cytoskeletal complex of the Sertoli cell related to spermatids. CD (500 microM for 6 h) produced a loss of 88% of the ES facing the head region of early (Step 8) elongating spermatids as compared to vehicle (dimethylsulfoxide:saline) controls. Nitrobenzoxadiazole-phallacidin staining of F-actin revealed a CD-related loss of uniform fluorescence over the head of elongated spermatids. To examine for a possible relationship between the presence of actin and cell attachment at ES sites, hypertonic fixatives were introduced to provoke cell shrinkage and stress ES-associated junctions. After osmotic stress, cell-to-cell adhesion at ES sites remained intact in vehicle-treated animals. CD treatment caused Sertoli cells to separate from elongating spermatids at sites where ES had been lost from the Sertoli cell surface. It is suggested that actin of the ES plays a role in cell-to-cell interaction analogous to its possible role at the Sertoli cell barrier. In CD-treated animals, structures resembling tubulobulbar complexes frequently developed at sites where ES was lost, suggesting that the loss of ES has a facilitatory role in tubulobulbar complex formation. It is hypothesized that tubulobulbar complexes are devices that rid the cells of ES-associated junctional links to effect dissociation of the spermatid from the Sertoli cell during spermiation. Spermatids at Step 8 of development are known to become oriented with their acrosomes facing the base of the Sertoli cell. After CD treatment, a 5.8-fold increase in malorientation of Step 8 spermatids was noted. A role for the ES cytoskeletal complex in orienting the spermatid acrosome toward the basal aspect of the Sertoli cell is also suggested.  相似文献   

6.
7.
The cytoskeletal events that assist restitution of the native intestinal epithelium are poorly understood. To enhance our understanding of repair mechanisms in the native intestinal epithelium we assessed the functional role of actin and the temporal and spatial alterations in actin and villin that occur in native enterocytes migrating in response to injury. Using a well-characterizedin vitroUssing chamber model of native intestine epithelial restitution, the actin inhibitor cytochalasin D (CD) was applied to determine the functional importance of actin to restitution as assessed by sensitive electrophysiological means and structural techniques. Additionally we used phalloidin and indirect immunohistochemistry to localize and semi-quantitate F-actin and villin in migrating cells during restitution. We report new data that shows that when cytoskeletal changes were impaired with CD, the epithelial monolayer was re-established in fewer than 20% of CD-treated villi, cells bordering the epithelial defect did not assume the characteristic phenotype associated with migrating cells, and transepithelial resistance did not return to pre-injury levels. F-actin and villin were present at the leading edge of the migrating cells, basolateral F-actin was decreased, and cytoplasmic villin was increased as determined by phalloidin and immunohistochemical methods. We conclude thatin vitrorepair of the native intestinal epithelium is functionally and structurally dependent on major changes in the cytoskeleton of cells involved in re-establishing the epithelial monolayer over a complex extracellular matrix.  相似文献   

8.
Normal rat kidney (NRK) fibroblasts respond to the cell shape-modulating chemical agent cytochalasin D (CD) with augmented synthesis of the 52-kDa substrate-associated protein p52. p52 is a complex glycoprotein, existing as 12 different isoforms, which include a 43-kDa "core" protein (p43), four 50-kDa species (p50-0,1,2,3), and at least seven distinct pI variants of the mature 52-kDa protein. A threshold of 2-4 microM CD was found to be necessary to augment p52 deposition into both the secreted protein- and saponin-resistant cytomatrix (SAP) fractions of NRK cells. This concentration of CD was also necessary to initiate significant cell rounding. Augmented p52 production in CD-treated NRK (NRK/CD) cells provided a means to assess the identity of this protein. p52 was found to be identical to rat plasminogen activator inhibitor type-1 (rPAI-1) and to PAI-1-like proteins of other species by comparative immunoprecipitation, 2-D electrophoretic profile, V8 protease digest mapping, and subcellular fractionation criteria. Quantitation of rPAI-1 cytoplasmic mRNA abundance, using the rPAI-1 cDNA probe pSS1-3, revealed an induction of rPAI-1 mRNA in NRK/CD cells which paralleled the increased protein production. CD-augmented p52(rPAI-1) synthesis and SAP deposition was blocked by actinomycin D, implicating a need for RNA synthesis during the period of CD exposure to effect induction. Augmentation of p52 expression in NRK/CD fibroblasts, thus, appears to involve both cell shape-associated metabolic processes and concomitant RNA synthesis.  相似文献   

9.
The toxic effects of cadmium (Cd) and copper (Cu) on cellular metabolism and cell morphology were investigated in isolated hepatopancreas cells from the Roman snail (Helix pomatia). Cell viability was unaffected during 1 h of incubation with 100 microM Cd, but was significantly reduced from 93% in controls to 87% and 85% with 100 microM Cu and 500 microM Cd, respectively. The adverse effect of 500 microM Cd on cell viability was not observed in cells isolated from Cd pretreated snails. Oxygen consumption remained constant in the presence of 100 microM Cu but was inhibited by 38% after 1 h of exposure to 500 microM Cd. Hepatopancreas cells showed enhanced formation of reactive oxygen species when exposed to 100 microM Cu, but not in the presence of Cd. Morphologically, an increase in cell volume of Cd-exposed cells was noted, while cell membrane bleb formation was induced by both metals. The latter may have been induced by metal effects on the actin filamentous network of the cells which showed distinct actin-staining within the blebs at the cell surface. Overall, our data indicate that both Cd and Cu are acutely toxic for hepatopancreas cells form the Roman snail with Cu being more toxic than Cd.  相似文献   

10.
The influence of phorbol myristate acetate (PMA), dibutyryl cAMP and insulin-like growth factor (IGF-1) as well as cytoskeletal disrupting drugs on morphological changes has been studied in peritubular cells isolated from immature rat testis. Morphological studies were combined with immunofluorescence investigations of cytoskeletal elements and their rearrangements by various agents. The results were correlated with modulation of proteoglycan synthesis. Peritubular cells exposed to dibutyryl cAMP or cytochalasin D were transformed from flattened, fibroblast-like into neuronal-like morphology. In such cells, destruction of actin filaments was accompanied with a 50% decrease in cell-associated proteoglycan synthesis as well as with oversulfation of total proteoglycans. On the contrary, peritubular cell shape has been slightly altered after addition of PMA, IGF-1, vinblastine or colchicine. After these treatments, destruction or rearrangement of cytoskeletal elements was observed; cell-layer proteoglycan synthesis remained either unchanged or increased while total proteoglycans were always undersulfated. IGF-1, PMA and dibutyryl cAMP modified the peritubular cell morphology, cytoskeletal organization and proteoglycan production; the cytoskeleton disrupting drugs such as vinblastine, colchicine and cytochalasin D mimicked some of these effects. These observations suggest that alterations in proteoglycan biosynthesis, after activation of tyrosine kinase, protein kinase C and protein kinase A pathways might be mediated, at least in part, by the disorganization of the cytoskeleton structure.  相似文献   

11.
Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2) cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.  相似文献   

12.
13.
Butyltin (BT) compounds are known for their worldwide contamination. Dibutyltin (DBT) is used as a stabilizer in plastic products, and as a deworming agent in poultry. Poultry products have been shown to contain measurable levels of DBT. Drinking water has also been reported to contain BTs due to leaching from PVC pipes. We, and others, have found measurable levels of DBT in human blood. BTs appear to increase the risk of cancer and other viral infections in exposed individuals. In previous studies we have shown that the tumor killing function of natural killer (NK) lymphocytes was greatly diminished after as little as a 1 h exposure to DBT and the inhibition continued even after removal of the compound. We also showed that there was a significant decrease in NK cell lysis of K562 target cells after an exposure to 1.5 microM DBT for 24 h. This 24 h exposure also decreased the ability of NK cells to bind to tumor cells. Loss of binding function was not seen when NK cells were exposed to 5-10 microM DBT for 1 h. However, NK cells exposed to 5 microM DBT for 1 h and then incubated in DBT-free media for 24, 48, or 96 h, showed a significant loss of tumor-binding function within 24 h. The effects of DBT exposure on seven cell surface molecules that are involved in NK-cell interactions with target cells were investigated. The results indicated that the exposure of NK cells to 1.5 microM DBT for 24 h decreased the expression of CD2, CD11a, CD16, CD11c. There was no decrease in expression of any of the markers studied when NK cells were exposed to 5 microM DBT for 1 h, consistent with the fact that a 1-h exposure had no effect on the ability of NK cells to bind tumor cells. However, when NK cells were exposed to 5 microM DBT for 1 h followed by 24, 48 or 96 h incubations in DBT-free media there was decreased expression of several of the cells surface molecules with the most dramatic decreases being in CD16 and CD56.  相似文献   

14.
Ca2(+)-regulated native thin filaments were extracted from sheep aorta smooth muscle. The caldesmon content determined by quantitative gel electrophoresis was 0.06 caldesmon molecule/actin monomer (1 caldesmon molecule per 16.3 actin monomers). Dissociation of caldesmon and tropomyosin from the thin filament and the depolymerization of actin was measured by sedimenting diluted thin filaments. Actin critical concentration was 0.05 microM at 10.1 and 0.13 at 10.05 compared with 0.5 microM for pure F-actin. Tropomyosin was tightly bound, with half-maximal dissociation at less than 0.3 microM thin filaments (actin monomer) under all conditions. Caldesmon dissociation was independent of tropomyosin and not co-operative. The concentration of thin filaments where 50% of the caldesmon was dissociated (CD50) ranged from 0.2 microM (actin monomer) at 10.03 to 8 microM at 10.16 in a 5 mM-MgCl2, pH 7.1, buffer. Mg2+, 25 mM at constant I, increased CD50 4-fold. CD50 was 4-fold greater at 10(-4) M-Ca2+ than at 10(-9) M-Ca2+. Aorta heavy meromyosin (HMM).ADP.Pi complex (2.5 microM excess over thin filaments) strongly antagonized caldesmon dissociation, but skeletal-muscle HMM.ADP.Pi did not. The behaviour of caldesmon in native thin filaments was indistinguishable from caldesmon in reconstituted synthetic thin filaments. The variability of Ca2(+)-sensitivity with conditions observed in thin filament preparations was shown to be related to dissociation of regulatory caldesmon from the thin filament.  相似文献   

15.
A non-transformed (Vero) and two tumor cell lines (HepG2 and MCF-7) were treated with 10nM to 100 microM formaldehyde. Lower doses (10nM to 10 microM) enhanced the viability of the cultured cells, measured by MTT assay. Higher doses (75-100 microM) decreased viability of the cells by 50% or more. The 100 microM concentration of HCHO has been chosen for combination treatment of the three cell lines with a series of concentrations (0.2-100 microM) of resveratrol, a phytoestrogen occurring in various fruits. Resveratrol decreased the cytotoxicity of formaldehyde depending on cell line and point of time, especially in case of MCF-7 cells at 24 and 72 h, Vero cells at 24h and HepG2 cells at 48 h after treatment. Possible modes of interactions are discussed, considering the role of resveratrol in formaldehyde metabolism and also the estrogen receptor positivity of MCF-7 cells.  相似文献   

16.
Differentiation of embryonic stem cells is of great interest to developmental biology and regenerative medicine. This study investigated the effects of cytochalasin D (CD) on the distribution of actin filaments in mouse embryoid body (EB)-derived cells. Furthermore, CD was applied to chondrogenic medium to examine its chondrogenic effect. CD at a concentration of 1 microg/ml disrupted stress fibers in EB-derived cells. Actin filaments in treated cells reorganized into a peripheral pattern, and type II collagen was detected by immunocytochemistry. The expression of type II collagen, Sox9, and at a later time point, aggrecan was up-regulated after CD treatment. In the CD-treated cells, Oct4 and Sox2, representing undifferentiation, were down-regulated as well as Sox1, AFP, and CTN-1, representing ectoderm, endoderm, and cardiogenesis, respectively. In conclusion, CD treatment enhances chondrogenesis of EB-derived cells. Moreover, it promotes a more complete stem cell differentiation toward chondrogenesis, when cultured in chondrogenic medium.  相似文献   

17.
The cyclic hexadepsipeptide beauvericin, initially known as a secondary metabolite produced by the entomopathogenic fungus Beauveria bassiana and toxic to Artemia salina larvae, has been more recently recognized as an important mycotoxin synthesized by a number of Fusarium strains, which parasite maize, wheat and rice. Therefore, this mycotoxin may enter the food chain, causing yet unknown effects to the health of both domestic animals and humans. The cytotoxic effects of beauvericin on mammalian cells have been studied. We investigated the cytotoxicity of this compound in an in vitro invertebrate model, viz. the insect cell line SF-9 (immortalized pupal ovarian cells of the lepidopter Spodoptera frugiperda). Cultures of SF-9 cells in the stationary phase were exposed to beauvericin at concentrations ranging from 100 nM to 300 microM, for different periods of time (from 30' to 120 h). The effects on cell viability were assessed by the trypan blue exclusion method. After 4 h of incubation no significant decrease in cell viability was recorded in SF-9 cell cultures exposed to low concentrations of beauvericin, i.e. 100 nM and 300 nM. However, a slight decrease in viability (3.9%) was seen already in cells exposed to the mycotoxin at the 1 microM concentration. This effect became gradually more evident at higher concentrations (approximately equal to 28% at 30 microM, approximately equal to 50% at 100 microM, approximately equal to 68% at 300 microM). An even more pronounced reduction in cell viability was observed after a 24 h exposure. Under these conditions, 1 microM beauvericin caused an approx. 10% decrease in the number of viable cells, which became more significant at higher concentrations approximately equal to 23% at 3 microM, approximately equal to 47% at 10 microM, approximately equal to 65% at 30 microM, approximately equal to 90% at 100 microM, approximately equal to 99% at 300 microM). Therefore, the 50% cytotoxic concentrations (CC50) at 4 h and 24 h could be estimated as 85 microM and 10 microM, respectively. In time-course experiments, no effect of beauvericin (30 microM) on cell viability could be seen after exposure for periods of time as long as 30', 1 h and 2 h, respectively. In contrast, when SF-9 cells were exposed to the mycotoxin for longer periods of time, from 8 h to 120 h, we recorded a strong cytotoxic effect already in the low micromolar concentration range. Thus, the CC50 after both 72 h and 120 h exposure times was assessed as 2.5 microM. Higher concentrations caused a virtually 100% cell death. The data collected suggest that beauvericin exerts a substantial dose- and time-dependent cytotoxic effect on invertebrate cells, comparable to the effects described in mammalian cells.  相似文献   

18.
Ectoplasmic specializations (ES) containing packed actin microfilaments are associated with the numerous parallel rows of occluding junctions which form the Sertoli cell (blood-testis) barrier. To determine if ES regulate the structure of the occluding junctions and/or barrier permeability, we experimentally disrupted ES microfilaments in vivo with intratesticularly injected cytochalasin D (CD). Electron microscopic observations of seminiferous tubules from CD-treated (150-500 microM CD; 0.5-12 hr) animals indicated that ES was absent from regions where the Sertoli cell barrier is located. Seminiferous epithelial sheets from uninjected or vehicle-injected animals (1 DMSO: 1 saline) stained with NBD-phallacidin demonstrated the presence of patterned ES actin surrounding the basolateral regions of adjacent Sertoli cells. After exposure to CD, epithelial sheets exhibited increasingly patchy fluorescence indicating progressive F-actin disruption. Freeze-fracture replicas of CD-injected testes revealed numerous focal alterations in the region of occluding junctions which included disorganization of the parallel arrangement of junctional rows, the presence of free-ending rows, clustering of intramembranous particles (IMPs) between rows, reduction in the number of rows, and loss of IMPs on both the P-face and E-face. Tracer experiments, following CD exposure, were conducted to test the integrity of occluding junctions: lanthanum hydroxide, dextrose, or filipin was added, in separate experiments, to the fixative during perfusion-fixation. In another study, serum containing an antibody against adluminal germ cells was injected intratesticularly, and frozen sections were processed for immunofluorescence study. A final study consisted of simultaneous intratesticular infusions of CD and radiolabelled inulin with subsequent intraluminal and peritubular fluid sampling. In animals which were injected with CD, lanthanum was found to enter the adluminal compartment; fixative made hypertonic by addition of dextrose caused germ cells within the adluminal compartment to shrink and produce exaggerated intercellular spaces; filipin-cholesterol perturbations were present between some Sertoli cell junctional rows and on spermatid plasma membranes; and IgG was detected within the adluminal compartment of many seminiferous tubules. None of these adluminal manifestations was noted in control animals or those which received vehicle. Quantitatively, in the in vivo micropuncture experiments, significantly more radiolabelled inulin entered the lumen of seminiferous tubules from CD-treated animals than from those exposed to vehicle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Human Raji B lymphoid cells after exposure for 64 h to a 1 mT (rms) 50 Hz sinusoidal magnetic field showed a reorganization of membrane and cytoskeletal components. Atomic force microscopy in air revealed several modifications in 80% of the exposed cells, such as loss of microvilli-like structures followed by progressive appearance of membrane introflections. This change in plasma membrane morphology was also accompanied by a different actin distribution, as detected by phalloidin fluorescence. These observations support our previous hypothesis that electric and magnetic fields may modify the plasma membrane structure.  相似文献   

20.
This study was carried out to investigate the effects of 100 and 217 Hz extremely low-frequency pulsed electromagnetic fields (ELF-PEMF) on cell proliferation, actin reorganization, and ROS generation in a human breast carcinoma cells (T47D). Cells were exposed for 24–72 h, at 100 and 217 Hz, 0.1 mT. The treatment induced a time dependent decrease in cell growth after 72 h and revealed an increase in fluorescence intensity in cytoplasm and actin aggregations around the nucleus as detected by fluorescence microscopy. The amount of actin in T47D cells increased after 48 h exposure to 100 Hz and 24 h to 217 Hz while no changes in nuclear morphology were detected. Exposing the cells to 217 Hz for 72 h caused a dramatically increase of intracellular ROS generation while with exposure to 100 Hz it remained nearly unchanged. These results suggest that exposure to ELF-PEMF (100, 217 Hz, 0.1 mT) are able inducing an increase of actin level, its migration toward nucleus but despite of these changes and dramatically increase in ROS generation the symptoms of apoptosis were not observed. Our results support the hypothesis that cell response to EMF may only be observed at certain window effects; such as frequency and intensity of EMF parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号