共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteolysis of the products of mitochondrial protein synthesis in yeast mitochondria and submitochondrial particles.
下载免费PDF全文

Degradation of mitochondrial translation products in Saccharomyces cerevisiae mitochondria was studied by selectively labelling these entities in vivo in the presence of cycloheximide and following their fate in isolated mitochondria. One-third to one-half of the mitochondrial translation products are shown to be degraded, depending on the culture growth phase, with an approximate half-life of 35 min. This process is shown to be ATP-dependent, enhanced in the presence of puromycin and inhibited by chloramphenicol. Further, the proteolysis is suppressed by detergents and is insensitive to antisera against yeast proteinases A and B when measured in mitochondria or 'inside-out' submitochondrial particles. It is concluded that the breakdown of mitochondrial translation products is most probably due to the action of endogenous proteinase(s) associated with the mitochondrial inner membrane. This proteinase is inhibited by phenylmethanesulphonyl fluoride, leupeptin, antipain and chymostatin. 相似文献
2.
Distribution of the activities of some mitochondrial enzymes after sucrose density gradient ultracentrifugation of cell homogenates of S. cerevisiae in the early and late exponential growth phases is studied. It is demonstrated that young yeast cells have a characteristic complex distribution of NADH oxidase (cyanide-sensitive), succinate:ferricyanide-oxidoreductase (or succinate:2,6-dichlorophenol indophenol-oxidoreductase), NADH:2,6-dichlorophenol indophenol-oxidoreductase and cytochrome oxidase activities in sucrose density gradient; the distribution patterns of these activities are different. All the above activities are detected in a single relatively narrow band in mature yeast cells. Similar results are obtained in the experiments with glucose or galactose as a carbon source in the yeast growth media. The Arrhenius plots for NADH oxidase (as well as for succinate:2,6-dichlorophenol indophenol-oxidoreductase) activity do not differ in the case of "light" and "heavy" mitochondrial structures characteristic of yeast cells in the early exponential growth phase. Nevertheless, "light" and "heavy" mitochondrial structures differ with respect of the arrangement of certain respiratory chain components in their membranes NADH-dehydrogenase and cytochrome oxidase). This conclusion is drawn from the results obtained in the study of the interaction of the two types of structures with Fe(CN)6(3-), a non-penetrating ion and the antiserum to yeast mitochondria. 相似文献
3.
4.
5.
B. E. Damberga A. P. Vilcuns M. G. Laivenieks M. J. Beker 《Engineering in Life Science》1985,5(4):347-352
The effect of dehydration on proteolysis and activity of proteases A, B and C in the cells of baker's yeast Saccharomyces cerevisiae was investigated. It can be concluded, that under investigated conditions of yeast Saccharomyces cerevisiae drying a decrease of proteases activity takes place. In cells a limited proteolysis takes place which is indicated by an increase in amino nitrogen content and a decrease of tryptophane synthase activity. Adding the protease inhibitor to yeast suspension prevents decrease of tryptophane synthase activity upon dehydration. 相似文献
6.
Kaliuzhin VA 《Zhurnal obshche? biologii》2011,72(2):140-149
Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon. 相似文献
7.
Protein synthesis in eukaryotic organelles such as mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl tRNA (fMet-tRNA(fMet)) for initiation. Here we show that initiation of protein synthesis in yeast mitochondria can occur without formylation of the initiator methionyl-tRNA (Met-tRNA(fMet)). The formylation reaction is catalyzed by methionyl-tRNA formyltransferase (MTF) located in mitochondria and uses N(10)-formyltetrahydrofolate (10-formyl-THF) as the formyl donor. We have studied yeast mutants carrying chromosomal disruptions of the genes encoding the mitochondrial C(1)-tetrahydrofolate (C(1)-THF) synthase (MIS1), necessary for synthesis of 10-formyl-THF, and the methionyl-tRNA formyltransferase (open reading frame YBL013W; designated FMT1). A direct analysis of mitochondrial tRNAs using gel electrophoresis systems that can separate fMet-tRNA(fMet), Met-tRNA(fMet), and tRNA(fMet) shows that there is no formylation in vivo of the mitochondrial initiator Met-tRNA in these strains. In contrast, the initiator Met-tRNA is formylated in the respective "wild-type" parental strains. In spite of the absence of fMet-tRNA(fMet), the mutant strains exhibited normal mitochondrial protein synthesis and function, as evidenced by normal growth on nonfermentable carbon sources in rich media and normal frequencies of generation of petite colonies. The only growth phenotype observed was a longer lag time during growth on nonfermentable carbon sources in minimal media for the mis1 deletion strain but not for the fmt1 deletion strain. 相似文献
8.
Relationship between cytoplasmic and mitochondrial apparatus of protein synthesis in yeast Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
A P Surguchov A B Sudarickov M V Telckov V N Smirnov M D Ter-Avanesyan S G Inge-Vechtomov 《Molecular & general genetics : MGG》1983,189(1):172-174
A conditional respiratory deficiency in yeast Saccharomyces cerevisiae is expressed as a result of a nuclear mutation in sup1 and sup2 genes (II and IV chromosomes, respectively), coding for a component of cytoplasmic ribosomes (Ter-Avanesyan et al. 1982). One such strain is studied here in detail. The strain is temperature-dependent and expresses a respiratory deficient phenotype at 20 degrees C but not at 30 degrees C. Moreover, the strain is simultaneously chloramphenicol-dependent and is able to grow on media containing glycerol or ethanol as a sole carbon source only in the presence of the drug. Chloramphenicol has a differential effect on protein synthesis in mitochondria of the parent strain and the mutant. Since chloramphenicol is a ribosome-targeting antibiotic we suggest that the differential effect of the drug on parent and mutant mitochondrial protein synthesis is due to the altered properties of mito-ribosomes of the mutant compared to those of the parent strain. Mitochondria of the mutant synthesize all the mitochondrially encoded polypeptides, however, in significantly lowered amounts. A suggestion is put forward for the existence of a common component (a ribosomal protein) for mito and cyto-ribosomes. 相似文献
9.
Charton C Ulaszewski S da Silva Vieira MR Henoux V Claisse ML 《Biochemical and biophysical research communications》2004,318(1):67-72
Functional mitochondria with respiratory control were isolated from the yeasts Saccharomyces cerevisiae and Schwanniomyces castellii. The presence of site I in Schw. castellii was indicated by higher ADP/O ratio than in S. cerevisiae where this site is absent. The ATPase Vmax was higher in S. cerevisiae than in Schw. castellii mitochondria. The latter was increased by the DR12 nuclear mutation. Nevertheless, the stimulation by heat and the inhibition profile of oligomycins on mitochondrial F1-F0 ATPase activities were similar in all three tested strains. In S. cerevisiae and Schw. castelli wild type or mutant mitochondria, the well-known inhibition of F1-F0 ATPase activity by low concentrations of oligomycins is abolished at high inhibitor concentrations near 60microg/ml suggesting uncoupling of F1 activity. At still higher oligomycin concentration the ATPase activity of both species and mutant is again strongly inhibited, suggesting an inhibitory effect on yeast F1 activity not detected so far. 相似文献
10.
The mechanisms of interaction of nuclear and mitochondrial genes in biogenesis of mitochondria are discussed in this review. Brief characterization of yeast mitochondrial genes and their products is presented. The mechanism of nuclear and mitochondrial control of expression of the mosaic genes in mitochondria is described. The data on the processing of imported mitochondrial proteins synthesized on cytoplasmic ribosomes are presented. The possibility of existence of common proteins encoded for by common genes and possessing similar functions in the cytoplasm and mitochondria is discussed. A hypothesis is put forward considering the role of common proteins in coordination of nuclear and mitochondrial genes' expression in biogenesis of mitochondria. 相似文献
11.
12.
13.
Inhibition of mitochondrial protein synthesis in vivo by erythromycin in Schizosaccharomyces pombe and Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Summary In the presence of erythromycin (0.01 mg/ml) growth of Schizosaccharomyces pombe in non-fermentable substrate (glycerol) is reduced to 5–15% of the control without erythromycin, whereas growth in fermentable substrate (5% glucose) is left unaffected by concentrations up to 5 mg/ml. The reduction of growth under derepressed conditions is paralleled by inhibition of the formation of cytochromes a·a3 and b. Mitochondrial protein synthesis is inhibited to about 50% in Schizosaccharomyces pombe and to about 90% in Saccharomyces cerevisiae. These results support the hypothesis that inhibition of mitochondrial protein synthesis is the primary effect of erythromycin. 相似文献
14.
G F Nesterova 《Genetika》1988,24(7):1141-1152
The killer systems of Saccharomyces cerevisiae are a peculiar group of cytoplasmic symbionts of primitive eukaryotes. The genetic material of these symbionts is double-stranded RNA. Their basic properties are linearity of genome, its fragmentation, resulting in two separately replicating major and minor segments, and the ability to control the synthesis of secretory proteins--mycocins which can kill the taxonomically related strains. Secretion of mycocins also confers immunity to their action. The strains containing killer symbionts are toxigenic and resistant to their own toxins, while those with no killer double-stranded RNA are sensitive to mycocins. The killer systems of Saccharomyces cerevisiae possess some properties relevant to viruses and evidently are evolved during the evolution of infectious viruses. Occurrence of such systems in monocellular eucaryotic organisms is an example of genome complication in the course of putting together the virus-like components. The peculiarities of replication and expression of killer systems and their utilization for the construction of vector molecules are discussed. 相似文献
15.
Acetaldehyde production in Saccharomyces cerevisiae wine yeasts 总被引:1,自引:0,他引:1
Patrizia Romano Giovanna Suzzi Luca Turbanti Mario Polsinelli 《FEMS microbiology letters》1994,118(3):213-218
Abstract Eighty-six strains of Saccharomyces cerevisiae were investigated for their ability to produce acetaldehyde in synthetic medium and in grape must. Acetaldehyde production did not differ significantly between the two media, ranging from a few mg/l to about 60 mg/l, and was found to be a strain characteristic. The fermentation temperature of 30°C considerably increased the acetaldehyde produced. This study allowed us to assign the strains to different phenotypes: low, medium and high acetaldehyde producers. The low and high phenotypes differed considerably also in the production of acetic acid, acetoin and higher alcohols and can be useful for studying acetaldehyde production in S. cerevisiae , both from the technological and genetic point of view. 相似文献
16.
17.
Acetoin production in Saccharomyces cerevisiae wine yeasts 总被引:4,自引:0,他引:4
Abstract One hundred strains of Saccharomyces cerevisiae were examined for the capacity to produce acetoin in synthetic medium and in grape must. The low production of acetoin was found to be the more common pattern in this species. Most strains exhibited a similar distribution in both media, production ranging from non-detectable amounts to 12 mg 1−1 . Only four strains produced high quantities of acetoin, up to 29.5 mg l−1 in synthetic medium and up to 194.6 mg l−1 in grape must. This biometric study showed the existence of two phenotypes, "low and high acetoin production", that could be selected for conferring a desirable flavour of the final product. 相似文献
18.
19.
A FITC-dextran internalization assay with Saccharomyces cerevisiae as positive control was used to determine whether fluid-phase endocytosis is a general characteristic of yeasts. Schizosaccharomyces pombe, Pichia polymorpha, Kluyveromyces phaseolosporus, Yarrowia lipolytica and Candida albicans were clearly positive, whereas results obtained with Debaryomyces marama were inconclusive. In all cases internalized FITC-dextran was found to be localized in the vacuoles and the process was always time- and temperature-dependent. Lower eucaryotes, particularly yeasts, appear to have the ability to incorporate substances from the extracellular medium through fluid-phase endocytosis. 相似文献
20.
N alpha-acetyltransferase deficiency alters protein synthesis in Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
Acetylation is the most frequently occurring chemical modification of the alpha-NH2 group of eukaryotic proteins and is catalyzed by a N alpha-acetyltransferase. Two-dimensional gel electrophoresis was used to compare the soluble proteins synthesized in wild type and a mutant (aaa1) yeast cells lacking N alpha-acetyltransferase. Among 855 soluble proteins identified in wild type and mutant, approximately 20% of the proteins in the mutant either disappeared or were shifted to higher pI without a change of molecular mass, and 27 proteins were observed only in the mutant. In addition, the synthesis of another 12% of the proteins in the mutant was either diminished or enhanced, suggesting that the acetylation of certain regulatory proteins may affect their expression. This is the first demonstration of the broad-based functional role of N alpha-acetylation in eukaryotic protein synthesis. 相似文献