首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stereoselective high-performance liquid chromatographic (HPLC) method is described for the selective and sensitive quantitation in human plasma of R-(+)- and S-(−)-enantiomers of remoxipride. Remoxipride was extracted from basified plasma into hexane-methyl-tert.-butyl ether (20:80, v/v), washed with sodium hydroxide (1.0 M), then back-extracted into phosphoric acid (0.1 M). A structural analog of remoxipride was used as an internal standard. The sample extracts were chromatographed using a silica-based derivatized cellulose chiral column, Chiralcel OD-R, and a reversed-phase eluent containing 30–32% acetonitrile in 0.1 M potassium hexafluorophosphate. Ultraviolet (UV) absorbance detection was performed at 214 nm. Using 0.5-ml plasma aliquots, the method was validated in the concentration range 0.02-2.0 μg/ml and was applied in the investigation of systemic inversion of remoxipride enantiomers in man.  相似文献   

2.
The chemical substance 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) is in clinical use for the treatment of hereditary tyrosinemia type 1. In the present study, the plasma concentration of NTBC was determined by a coupled column liquid chromatographic method. A 20-μl volume of plasma was diluted with phosphate buffer, pH 2, and injected into a small precolumn (BioTrapAcid C18) with a mobile phase containing sulfuric acid. The precolumn was based on the restricted access principle, i.e., retention of NTBC within the lipophilic pores, while polar and large endogenous compounds were eluted with the void volume. NTBC was transferred to the analytical column using a mobile phase with a high content of acetonitrile. The compound was monitored by UV detection at 278 nm. The standard curve was linear between 0.3 and 69 μM, and the between-day precision (RSD) was 3% (n=6 days) at 13.8 μM and 14% (n=6 days) at 0.3 μM NTBC in plasma. The quantitation limit was approximately 0.3 μM using 20 μl of plasma.  相似文献   

3.
The determination of the enantiomeric impurity, i.e., the percentage of (+) N?0437 (= N?0924) in several batches of (??) N-0437 (= N-0923) by chiral HPLC is described. Enantiomeric impurities were calculated based on the peak areas of the two baseline separated enantiomers in the chromatogram. The enantiomeric impurities found in different batches ranged from 0.02% to 0.11%. Calibration curves of the two isomers of N-0437 (Fig. 1,) were made twice to study the reproducibility and linearity of the method. The absorbance ratio, N-0923/N-0924, was found to be 1.02 with a relative standard deviation (RSD) of 9% over the whole concentration range used for the calibration curves.  相似文献   

4.
A simple and rapid on-line method for the determination of chlorthalidone in urine is proposed. The sample containing the internal standard is injected in a CN precolumn. After a 2-ml water rinsing, the precolumn is coupled for 30 s to the HPLC column via a switching valve, allowing the on-line elution of the compounds of interest. Analysis is carried out by reversed-phase chromatography with an acetonitrile-0.01 M phosphate buffer pH 7 (20:80, v/v) eluent, using UV detection at 214 nm. While the LC separation is performed, the precolumn is regenerated and conditioned, and is ready to receive the next sample at the end of the run. Accurate (>95%) and precise (<10%) analyses, in the range of 0.1–20 μg/ml of chlorthalidone in urine, have been achieved using this method.  相似文献   

5.
A solid-phase extraction (SPE) procedure was developed for the quantification of nalbuphine in a small volume (500 μl) of human plasma with subsequent assay by high-performance liquid chromatography (HPLC) and electrochemical detection using 6-monoacetylmorphine as internal standard. Plasma was extracted using Bond Elute certified extraction columns (LCR: 10 ml, 130 mg) after conditioning with methanol and 0.2 M Tris buffer (pH 8). Elution was performed with a CH2Cl2-isopropanol-NH4OH (79:20:, v/v). The organic phase was evaporated to dryness and resuspended in HPLC mobile phase containing 2% isopropanol. Linearity was assessed over the 5–100 ng/ml concentration range and a straight line passing through the origin was obtained. Experiments with spiked plasma samples resulted in recoveries of 95±5.4% and 98±6.2% for nalbuphine and 6-monoacetylmorphine, respectively. The optimal pH conditions for the SPE were found at pH 8. The intra-day coefficients of variation (C.V.) for 5, 40, and 100 ng/ml were 5.3, 3.0 and 2.3% (n=8) and the inter-day C.V.s were 7.7, 3.2 and 3.5% (n=10), respectively. The detection limit for 500 μl plasma sample was 0.02 ng/ml and the limit of quantification 0.1 ng/ml (C.V.=12.4%). The ease of the proposed method of analysis, as well as its high accuracy and sensitivity allow its application to pharmacokinetic studies. A preliminary kinetic profile of nalbuphine after rectal administration in a pediatric patient is presented.  相似文献   

6.
A specific and reproducible HPLC method using a Chiral-AGP column and UV detection was developed for the evaluation of the pharmacokinetic profile of oxodipine enantiomers in dog and man. Each enantiomer was determined in plasma in the concentration range 1–400 ng/ml using the internal standard calibration method with linear regression analysis. After extraction of oxodipine and the internal standard at alkaline pH with diethyl ether—n-hexane (50:50, v/v), this method permitted the determination of each enantiomer at levels down to 10 ng/ml in dog plasma and 25 ng/ml in human plasma with sufficient accuracy (relative error <11%, n = 6) and precision (coefficient of variation <16%, n = 6). The extracted plasma volume was 500 μl and after evaporation of the organic phase, the dry residue was dissolved in 100 μl of water—2-propanol; an aliquot of 80 μl was injected into the HPLC system.  相似文献   

7.
Harringtonine and homoharringtonine are naturally occurring alkaloids with demonstrated antineoplastic activity against certain types of leukemias in cell cultures, experimental animals, and initial clinical trials. Sample preparation consists of addition of the internal standard (one compound used as the internal standard for the other), solvent extraction with methylene chloride, washing with ammonium formate, and evaporation to dryness. The residue is dissolved in the mobile phase (40% methanol—60% 0.1M ammonium formate) and an aliquot is chromatographed on μC18 reversed-phase column (flow-rate 1.5 ml/min). Peaks are detected with a spectrophotofluorimeter by monitoring the emission at 320 nm with excitation wavelength of 280 nm. Limit of detection is 10 ng/ml (20 nM) for both compounds; reproducible quantitation can be made to 30 ng/ml (60 nM).  相似文献   

8.
This report describes the analysis of pentamidine by isocratic reversed-phase high-performance liquid chromatography (HPLC) using a commercially available compound (melphalan) as the external standard. Previously described assays use ion-pairing HPLC, an internal standard (hexamidine) that is not readily available, and require a relatively large sample size. In the present assay, pentamidine was extracted from plasma using solid-phase extraction and was analyzed using a C18 column and a mobile phase containing 18% acetonitrile, 2% methanol, 0.2 M ammonium acetate and 0.5% triethylamine. The identity of the eluting peaks was verified using a diode array detector. The extraction yield of pentamidine was 82%. The limit of detection was 8.6 ng/ml with a sample size of 100 μl. The inter-day and intra-day coefficients of variation ranged between 0.3% and 10% with an average of 5%. This method was applied to study the pharmacokinetics of pentamidine in rodents.  相似文献   

9.
A rapid, selective, sensitive and reproducible HPLC with recutive electrochemical detection for quantitatvie determination of artemether (ART) and its plasma metabolite, dihydroartemisinin (DHA: and β isomers) in plasma is described. The procedure involved the extraction of ART, DHA and the internal standard, artemisinin (ARN) with dichloromethane-tert.-methylbutyl ether (1:1, v/v) or n-butyl chloride-ethyl acetate (9:1, v/v). Chromatographic separation was performed with a mobile phase of acetonitrile-water (20:80, v/v) containing 0.1 M acetic acid pH 5.0, running through a μBondapak CN column. The method was capable of separating the two isomeric forms of DHA (, β). The retention times of -DHA, β-DHA, ARN and ART were 4.6, 5.9, 7.9 and 9.6 min, respectively. Validation of the assay method was performed using both extraction systems. The two extraction systems produced comparable recoveries of the various analytes. The average recoveries of ART, DHA and ARN over the concentration range 80–640 ng/ml were 86–93%. The coefficients of variation were below 10% for all three drugs (ART, -DHA, ARN). The minimum detectable concentrations for ART and -DHA in spiked plasma samples were 5 and 3 ng/ml, respectively. The method was found to be suitable for use in clinical pharmacokinetic study.  相似文献   

10.
A simple and sensitive high-performance liquid chromatographic method was developed for the determination of sildenafil transdermal permeation of nude mouse skin. A reversed-phase column with UV detection at 224 nm was used for chromatographic separation. The mobile phase consisted of 32% acetonitrile with 0.2% phosphoric acid in water at pH 5.3 adjusted with 10 M NaOH with the flow-rate set at 1.0 ml/min. The limit of quantitation achieved was 5 ng/ml, and the calibration curve showed good linearity over the concentration range of 5–500 ng/ml. The relative standard deviations of within- and between-day analyses were all within 15%. Sildenafil was found to be stable between pH 3 and 12 during 24-h incubation with skin. After transdermal administration of 15.8 μg/ml of sildenafil to nude mouse skin, it was detected as early as 15 min. The transport amount of sildenafil could be quantitated and, at pH 8–11, had the highest permeation rate in nude mouse skin.  相似文献   

11.
O-Hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) is a chiral organophosphorus compound that undergoes enzymatic hydrolysis in the rat and hen. Studies of the stereospecificity of its biodegradation are necessary to establish HDCP toxicity. To this effect, methods have been developed for the analysis of the HDCP stereoisomers by gas chromatography (GC) and high-performance liquid chromatography (HPLC). The best resolution and analysis were obtained by HPLC with UV detection, a OA-4100 Techocel chiral column and the mobile phase: hexane—1,2-dichloroethane—ethanol (92:5:3, v/v/v). The detection limit was 25 μM for HDCP and 5 μM for one of its hydrolytic products: 2,5-dichlorophenol (DCP). The method was reproducible intra o inter die. Moreover, a method is described for the liquid extraction of HDCP and DCP with 1,2-dichloroethane in biological samples, with a yield of (80.3 ± 9.7)% (n = 10, S.D.) for HDCP and (84.1 ± 10.0)% (n = 10, S.D.) for DCP. The method is compared with the solid-phase extraction technique with C18 sorbent. The hydrolysis of HDCP by hen plasma is studied.  相似文献   

12.
An isocratic high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of clozapine (8-chloro-11-(4′-methyl)piperazino-5H-dibenzo[b,e]-1,4-diazepine) and its two major metabolites in plasma and red blood cells (RBCs). The method involves sample clean-up by liquid-liquid extraction with ethyl acetate. The organic phase was back-extracted with 0.1 M hydrochloric acid. Loxapine served as the internal standard. The analytes were separated by HPLC on a Kromasil Ultrabas C18 analytical column (5 μm particle size; 250×4.6 mm I.D.) using acetonitrile-phosphate buffer pH 7.0 (48:52, v/v) as eluent and were measured by UV absorbance detection at 254 nm. The limits of quantification were 20 ng/ml for clozapine and N-desmethylclozapine and 30 ng/ml for clozapine N-oxide. Recovery from plasma or RBCs proved to be higher than 62%. Precision, expressed as % C.V., was in the range 0.6–15%. Accuracy ranged from 96 to 105%. The method's ability to quantify clozapine and two major metabolites simultaneously with precision, accuracy and sensitivity makes it useful in therapeutic drug monitoring.  相似文献   

13.
A high-performance liquid chromatographic method was developed for the determination of a chemoprotective agent, 2-(allylthio)pyrazine (I), in human plasma and urine, and in rat blood and tissue homogenate using diazepam as an internal standard. The sample preparation was simple; 2.5 volumes of acetonitrile were added to the biological sample to deproteinize it. A 50–100 μl aliquot of the supernatant was injected onto a C18 reversed-phase column. The mobile phase employed was acetonitrile–water (55:45, v/v), and it was run at a flow-rate of 1.5 ml/min. The column effluent was monitored using an ultraviolet detector at 330 nm. The retention times for I and the internal standard were 4.0 and 5.1 min, respectively. The detection limits of I in human plasma and urine, and in rat tissue homogenate (including blood) were 20, 20 and 50 ng/ml, respectively. The coefficients of variation of the assay (within-day and between-day) were generally low (below 6.1%) in a concentration range from 0.02 to 10 μg/ml for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

14.
A reversed-phase ion-pair high-performance liquid chromatography method for the determination of acyclovir and its metabolite 9-carboxymethoxymethylguanine is described. The samples are purified by reversed-phase solid-phase extraction. The components are separated on a C18 column with a mobile phase containing 18% acetonitrile, 5 mM dodecyl sulphate and 30 mM phosphate buffer, pH 2.1, and measured by fluorescence detection using an excitation wavelength of 285 nm and an emission wavelenght of 380 nm. Detection limits are 0.12 μM (plasma)) and 0.60 μM (urine) for acyclovir, and 0.26 μM (plasma) and 1.3 μM (urine) for metabolite. Correlation coefficients that were better than 0.998 were obtained normally. This analytical method, which enables simultaneous measurement of parent compound and metabolite, has been used in kinetics studies and for therapeutic drug monitoring in different patient groups with variable degrees of renal dysfunction.  相似文献   

15.
A high-performance liquid chromatography (HPLC) method was developed for quantification of both isomers of the thioxanthene neuroleptic flupentixol and of the butyrophenone derivative haloperidol in human serum. After extraction with diethyl ether–n-heptane (50:50, v/v), an isocratic normal-phase HPLC system with a Hypersil cyanopropyl silica column (250×4.6 mm, 5 μm particle size) was used with ultraviolet detection at 254 nm and elution with a mixture of 920 ml acetonitrile, 110 ml methanol, 30 ml 0.1 M ammonium acetate, and 50 μl triethylamine. The limit of quantitation of 0.5 ng/ml and 0.3 ng/ml for flupentixol and haloperidol, respectively, was sufficient to quantify both compounds in serum after administration of clinically adjusted doses. The suitability of the described method for therapeutic drug monitoring and clinical pharmacokinetic studies was assessed by analysis of more than 100 trough level serum samples.  相似文献   

16.
We developed a sensitive and selective method for determining levels of sultopride, a neuroleptic drug of the substituted benzamide, in human plasma using high-performance liquid chromatography (HPLC) combined with UV detection and particle beam mass spectrometry (PBMS). Sutopride was extracted with tert.-butylmethyl ether using a salting-out technique. Tiapride served as an internal standard (I.S.). Sutopride and I.S. were separated by HPLC on a silica column with a mobile phase of acetonitrile-0.1 M ammonium acetate (94:6, v/v). The calibration curves were linear over the concentration range from 5 to 1000 ng/ml by HPLC with UV detection and from 10 to 1000 ng/ml with PBMS detection. The limit of quantitation was 5 ng/ml with UV detection and 10 ng/ml with PBMS detection. The absolute recovery was 92% and the within-day coefficients of variation were 2.9–7.1% at plasma concentrations from 50 to 500 ng/ml, determined by HPLC with UV detection. Using this method, we measured the plasma concentrations of sultopride with replicate analyses in four hospitalized patients and steady-state plasma levels were determined to be 161.6±30.8, 321.1±93.7, 726.5±143.1 and 1273.6±211.2 ng/ml, respectively.  相似文献   

17.
This article reports the purification of a renin-like enzyme (an aspartyl protease) from head parts of the leech Theromyzon tessulatum. After four steps of purification including gel permeation and anion exchange chromatographies followed by reversed-phase HPLC, this enzyme was purified to homogeneity. The renin-like enzyme (of 32 kDa) hydrolyses at neutral pH and at 37°C, the Leu10-Leu11 bond of synthetic porcine angiotensinogen tetradecapeptide yielding the angiotensin I and the Leu11-Val12-Tyr13-Ser14 peptide as products, with a specific activity of 1.35 pmol AI/min/mg (Km 22 μM; Kcat 2.7). The hydrolysis of angiotensinogen is inhibitable at 90% by pepstatin A (IC50 = 4.6 μM), consistent with a renin activity. This is the first biochemical evidence of renin-like enzyme in invertebrates.  相似文献   

18.
An HPLC method for the quantification of ketoprofen enantiomers in human plasma is described. Following extraction with a disposable C18 solid-phase extraction column, separation of ketoprofen enantiomers and I.S. (3,4-dimethoxy benzoic acid) was achieved using a chiral column [Chirex 3005; (R)-1-naphthylglycine 3,5-dinitrobenzoic acid] with the mobile phase, 0.02 M ammonium acetate in methanol, set at a flow-rate of 1.2 ml/min. Baseline separation of ketoprofen enantiomers and I.S., free from interferences, was achieved in less than 20 min. The calibration curves (n = 14) were linear over the concentration range of 0.16 to 5.00 μg/ml per enantiomer [mean r2 of 0.999 for both enantiomers, root mean square error were 0.015 for R(−) and 0.013 for S(+)]. The inter-day coefficient of variation for duplicate analysis of spiked samples was less than 7% and the accuracy was more than 93% over the concentration range of 0.2 to 4.0 μg/ml for individual enantiomer using 1 ml of plasma sample. This method has been applied to a pharmacokinetic study from healthy human volunteers following the administration of a ketoprofen extended release product (200 mg). This method is simple, fast and should find wide application in monitoring pharmacokinetic studies of ketoprofen.  相似文献   

19.
A selective and sensitive HPLC assay for the quantitative determination of a new antifilarial drug, 6,4′-bis-(2-imidazolinylhydrazone)-2-phenylimidazo[1,2-a]pyridine (CDR 101) is described. After extraction from plasma and blood, CDR 101 was analysed using a C18 Nucleosil ODS column (250×4.6 mm, 5 μm particle size) and mobile phase of acetonitrile-0.05 M ammonium acetate adjusted to pH 3.0, with UV detection at 318 nm. The mean recoveries of CDR 101 in plasma and blood over a concentration range of 25–500 ng/ml were 95.5±2.01% and 83.3±1.87%, respectively. The within-day and day-to-day coefficient of variations for plasma were 3.23-6.21% and 2.59-9.90%, respectively, those for blood were 2.59-5.92% and 2.89-6.82%, respectively. The minimum detectable concentration for CDR 101 was 1 ng/ml in plasma and 2.5 ng/ml in whole blood. This method was found to be suitable for clinical pharmacokinetic studies.  相似文献   

20.
A sensitive analytical procedure for bupivacaine dosing in plasma samples by reversed-phase high-performance liquid chromatography is described. After a two-step extraction, the analysis was performed using a C18 column and a mobile phase of 0.01 M sodium dihydrogen-phosphate (pH 2.1)—acetonitrile (80:20, v/v). The extraction yield of bupivacaine from plasma was 73.5 ± 5.1% (mean ± S.D., n = 10). The within-day and between-day reproducibilities at a concentration of 100 ng/ml were 2.1% and 5.6%, respectively (n = 10). Calibration curves were linear (r2 = 0.9996) between 5 and 1000 ng/ml. The limit of detection, defined by a signal-to-noise ratio of 3:1, was 2 ng/ml. The accuracy at a concentration of 100 ng/ml was 2.3%. This method could be applied to the plasma analysis of seven other local anaesthetics (articaine, etidocaine, lidocaine, mepivacaine, pramocaine, procaine and tetracaine). The procedure was used in bioavailability studies of bupivacaine-loaded poly( -lactide) (i.e. PLA) and poly( -lactide-co-glycolide) (i.e. PLGA) microspheres after subcutaneous and intrathecal administrations in rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号