首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
张晓蓉 《微生物学报》2011,51(3):297-304
基于发展纳米材料"绿色合成技术"重要性,生物合成纳米材料已成为纳米合成技术研究热点。微生物具有廉价、易培养、繁殖快等优点被应用于多种纳米材料的生物合成研究,成为生物合成纳米材料的重要生物类群。本文综述了细菌、放线菌、酵母菌以及真菌等微生物应用于纳米生物合成技术的发展;着重评述了纳米材料微生物合成生物方法、纳米材料微生物合成相关机制、纳米材料形貌和尺寸微生物调控合成方法以及应用研究进展;并对纳米材料微生物合成技术未来发展趋势进行了展望。  相似文献   

2.
银纳米粒子具有抗菌、抗癌、抗病毒等多种生物活性。生物法合成银纳米粒子在合成过程中绿色环保,无需二次改性,具有很好的稳定性、安全性、兼容性,在生物医药方面具有显著优势。近年来,人们在银纳米粒子的生物合成方法与机制,以及生物合成的银纳米粒子用于敷料、涂层、载药等方面的技术研发方面取得了长足进展。现对这些最新研究成果进行归纳和总结,以期为后续研究提供参考。  相似文献   

3.
作为一种新型纳米材料,荧光量子点的合成方法大致可分为物理法、化学法和生物合成法。生物合成方法因其绿色、环保、产物生物相容性好而备受关注。本文通过对国内外荧光量子点生物合成方法的资料研究,以细菌、真菌、其它生物机体、生物辅助等角度对生物合成荧光量子点的方法进行归纳总结,并着重对基于微生物的合成方法进行了分类。在探讨微生物合成机理的基础上,对生物合成法的未来方向提出展望。  相似文献   

4.
周雍进 《生物工程学报》2023,39(6):2101-2107
以酶及微生物细胞催化剂结合工程学方法将廉价、废弃原料进行高效生物转化可实现化学品的可持续生产。近年来,合成生物学、系统生物学及酶工程等技术的快速发展大大推动了化学品的可持续生物制造,既实现了多种新型化学品的生物合成,又显著提高化学品的生物合成效率。为展示化学品生物合成的最新进展并促进绿色生物制造的发展,《生物工程学报》特组织出版化学品生物合成专刊,从酶催化与生物合成机制、微生物细胞合成、一碳生物炼制以及关键核心技术等方面,介绍化学品生物合成的最新前沿、挑战以及潜在解决方案。  相似文献   

5.
金纳米颗粒凭借其独特的光学和电化学特性,广泛应用于信息存储、化学传感、医学成像、药物传输以及生物标记等领域。近年来,生物法合成金纳米颗粒因其环境友好、绿色低毒等特点引起研究者的广泛关注。研究表明,多种微生物包括细菌、放线菌、真菌和病毒等均具有合成金纳米颗粒的能力。本文综述了微生物介导合成金纳米颗粒的特性、机制及应用,并对未来发展趋势进行了展望。  相似文献   

6.
纳米粒子具有独特的光、电和催化性质;生物物质具有识别、催化和抑制的特性;纳米粒子连接生物分子从而合成了具有生物上的电、光性质的纳米粒子—生物分子复合体。本文介绍了纳米粒子-生物分子复合体系的合成,以及这些纳米粒子—生物分子复合体在生物医学领域的应用及研究进展。  相似文献   

7.
纳米硫铁是一种新型纳米材料,具有良好的导电性、吸附性和还原性,可以强化微生物之间的电子传递,促进污染物降解,近年来已被广泛研究。生物合成法具有污染小、成本低、反应条件温和、纳米硫铁产物性能好等优点。本文中,笔者综述了不同微生物合成纳米硫铁的相关研究进展,总结了其在强化电子传递及污染物去除方面的研究现状,并对生物纳米硫铁应用于生物电化学系统以及污染物去除的前景进行了分析和展望。  相似文献   

8.
王赫  崔岱宗  杨典  赵敏 《微生物学报》2021,61(11):3391-3400
硫化镉纳米粒子(cadmium sulfide nanoparticles,CdS NPs)是一种重要的半导体,具有突出的光电特性、可调带隙和化学稳定性,在分析化学、生物医学、荧光成像和生物传感器等方面具有潜在应用价值。生物合成CdS NPs具有可控、低成本、环境友好等优势而被广泛研究。然而CdS NPs本身兼具纳米材料毒性及重金属硫化物毒性,其对原核微生物的毒性研究受到广泛关注。本文以大肠杆菌为例,对CdS NPs在原核生物细胞内的毒性机理研究进展进行了综述,包括CdS NPs的生物合成机制、CdS NPs对大肠杆菌的毒害作用以及大肠杆菌对该毒害作用的防御机制,着重论述了细菌在合成CdS NPs过程中Cd2+及CdS对合成细菌本身的毒理作用及该细菌所产生的相应应激机制。本文旨在更好、更全面地评估CdS NPs的毒性,促进抗CdS NPs的原核生物在相关领域的发展和应用。  相似文献   

9.
【背景】金纳米颗粒(AuNPs)凭借其稳定性、抗氧化性能和生物相容性在许多领域有广泛应用。目前关于微生物合成金纳米颗粒的研究较少。【目的】对微生物合成金纳米颗粒的可能性以及影响因素进行探究,有利于揭示具体的合成机制,发现AuNPs的特性以及合成位置与菌丝和影响因素的关系。【方法】以绿色木霉菌(Trichoderma viride)菌株(GIM3.141)为菌种资源,通过目视检测法、紫外可见分光光度计、X射线衍射和透射电镜等手段分析合成AuNPs的特征。探讨细胞内生物合成金纳米颗粒(AuNPs)的可能性,研究生物量、初始金离子浓度、溶液pH等因素对细胞内合成AuNPs的影响。【结果】X射线衍射分析表明AuNPs以金纳米晶体形态存在。透射电镜分析表明AuNPs主要位于细胞壁膜间隙,一小部分附着在细胞壁上。紫外可见分光光度计分析表明,金纳米颗粒粒径随着生物量添加量和溶液pH的升高而变小,随着初始金离子浓度的升高而变大。【结论】非致病性真菌绿色木霉菌可以在细胞内合成AuNPs,其中包括伪球形、三角形、四边形和六边形等多种形状,粒径范围从几纳米到三百纳米,为大规模、低成本、无污染地生物合成纳米颗粒工艺提供了菌种资源。  相似文献   

10.
5-氨基乙酰丙酸(5-ALA)是生物体内吡咯类物质生物合成的前体物质,在医药和农业领域显示出广阔的市场潜力。随着代谢工程的发展以及对5-ALA生物合成途径的研究,利用微生物合成5-ALA成为研究的新方向。与传统的化学法合成相比,利用微生物合成5-ALA具有低污染、高产率和低成本等优势。本文中,笔者介绍了5-ALA生物合成的最新研究进展,分析了5-ALA代谢途径的关键影响因素,并对未来的研究方向进行了展望。  相似文献   

11.
Biogenic synthesis of metal nanoparticles has been well proved by using bacteria, fungi, algae, actinomycetes, plants, etc. Among the different microorganisms used for the synthesis of metal nanoparticles, actinomycetes are less known. Although, there are reports, which have shown that actinomycetes are efficient candidates for the production of metal nanoparticles both intracellularly and extracellularly. The nanoparticles synthesized by the members of actinomycetes present good polydispersity and stability and possess significant biocidal activities against various pathogens. The present review focuses on biological synthesis of metal nanoparticles and their application in medicine. In addition, the toxicity of these biogenic metal nanoparticles to human beings and environment has also been discussed.  相似文献   

12.
《Process Biochemistry》2007,42(5):919-923
The development of reliable processes for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Reports on the cell-associated biosynthesis of silver nanoparticles using microorganisms have been published, but these methods of synthesis are rather slow. In this paper, we report on the rapid synthesis of metallic nanoparticles of silver using the reduction of aqueous Ag+ ion using the culture supernatants of Klebsiella pneumonia, Escherichia coli, and Enterobacter cloacae (Enterobacteriacae). The synthetic process was quite fast and silver nanoparticles were formed within 5 min of silver ion coming in contact with the cell filtrate. Through a limited screening process involving a number of common microorganisms, we observed that the culture supernatants of different bacteria from Enterobacteriacae were potential candidates for the rapid synthesis of silver nanoparticles; further, we revealed that this method of synthesis requires far less time than previously published biological methods. Our investigation also showed that piperitone can partially inhibit the reduction of Ag+ to metallic silver nanoparticles by Enterobacteriacae.  相似文献   

13.
In recent years, the green approach of nanoparticle synthesis by biological entities has been gaining great interest over various other physico-chemical methods, which are laden with many disadvantages. The important challenging issues in current nanotechnology include the development of reliable experimental techniques for the synthesis of nanoparticles of different compositions and sizes along with high monodispersity. Biological systems offer unique promising features to tailor nanomaterials with predefined properties. Fungi are the favorite choice of microorganisms due to the wide variety of advantages they offer over bacteria, yeast, actinomycetes, plants, and other physico-chemical techniques. The use of microorganisms for the deliberate synthesis of nanoparticles is a fairly new and exciting area of research with considerable potential for further development. This review describes an overview of the current green approaches for the synthesis of nanoparticles with particular emphasis on fungi, which are gaining worldwide popularity as nano-factories for the green synthesis of nanoparticles.  相似文献   

14.
Recent developments in the biosynthesis of nanomaterials have demonstrated the important role of biological systems and microorganisms in nanoscience and nanotechnology. These organisms show a unique potential in environmentally friendly production and accumulation of nanoparticles with different shapes and sizes. Therefore, researchers in the field of nanoparticle synthesis are focusing their attention to biological systems. In order to obtain different applied chemical compositions, controlled monodispersity, desired morphologies (e.g., amorphous, spherical, needles, crystalline, triangular, and hexagonal), and interested particle size, they have investigated the biological mechanism and enzymatic process of nanoparticle production. In this review, most of these organisms used in nanoparticle synthesis are shown.  相似文献   

15.
Nanoparticles, the elementary structures of nanotechnology, are important materials for fundamental studies and variety of applications. The different sizes and shapes of these materials exhibit unique physical and chemical properties than their bulk materials. There is a great interest in obtaining well-dispersed, ultrafine, and uniform nanoparticles to delineate and utilize their distinct properties. Nanoparticle synthesis can be achieved through a wide range of materials utilizing a number of methods including physical, chemical, and biological processes with various precursors from liquids and solids. There is a growing need to prepare environmentally friendly nanoparticles that do not produce toxic wastes in their process synthesis protocol. This kind of synthesis can be achieved by green environment benign processes, which happen to be mostly of a biological nature. Microorganisms are one of the most attractive and simple sources for the synthesis of different types of nanoparticles. This review is an attempt to provide the up-to-date information on current status of nanoparticle synthesis by different types of microorganisms such as fungi, yeast, bacteria, cyanobacteria, actinomycete, and algae. The probable biosynthesis mechanism and conditions for size/shape control are described. Various applications of microbially synthesized nanoparticles are summarized. They include antibacterial, antifungal, anticancer, larvicidal, medical imaging, biosensor, and catalytic applications. Finally, limitations and future prospects for specific research are discussed.  相似文献   

16.
Green synthesis of metallic nanoparticles has become a promising field of research in recent years. Syntheses of gold and silver nanoparticles by various chemical and physical methods as well as the biosynthetic approach mediated by numerous microorganisms have been actively researched. A more scalable and economic route to produce these metallic nanoparticles would be through the plant-mediated synthetic approach. Owing to the biodiversity of plant biomasses, the mechanism by which bioconstituents of plants have contributed to the synthetic process is yet to be fully understood. Nevertheless, the feasibility of controlling the shape and size of nanoparticles by varying the reaction conditions has been demonstrated in many studies. This paper provides an overview of the plant-mediated syntheses of gold and silver nanoparticles, possible compounds and mechanisms that might be responsible for the bioreduction process as well as the potential applications of biosynthesized nanoparticles in different fields. The challenges and limitations of this plant-mediated biosynthetic approach are also discussed.  相似文献   

17.
氮化合物在生命代谢过程中扮演着重要的角色,但过多的无机氮会导致水体恶化进而影响人类健康,生物脱氮技术可高效去除环境中的无机氮且不引起二次污染.随着工程纳米颗粒在生活中的广泛应用,导致其大量释放到土壤及水体中,极大地阻碍了废水处理中的生物脱氮过程,因此,微生物脱氮过程中工程纳米颗粒的毒害作用及减毒措施成了近年来的研究热点...  相似文献   

18.
Protein glycosylation is one of the most important PTMs in biological organism. Lectins such as concanavalin A (Con A) have been widely applied to N‐glycosylated protein investigation. In this study, we developed Con A‐immobilized magnetic nanoparticles for selective separation of glycoproteins. At first, a facile immobilization of Con A on aminophenylboronic acid‐functionalized magnetic nanoparticles was performed by forming boronic acid‐sugar‐Con A bond in sandwich structure using methyl α‐D ‐mannopyranoside as an intermedium. The selective capture ability of Con A‐modified magnetic nanoparticles for glycoproteins was tested using standard glycoproteins and cell lysate of human hepatocelluar carcinoma cell line 7703. In total 184 glycosylated sites were detected within 172 different glycopeptides corresponding to 101 glycoproteins. Also, the regeneration of the protein‐immobilized nanoparticles can easily be performed taking advantage of the reversible binding mechanism between boronic acid and sugar chain. The experiment results demonstrated that Con A‐modified magnetic nanoparticles by the facile and low‐cost synthesis provided a convenient and efficient enrichment approach for glycoproteins, and are promising candidates for large‐scale glycoproteomic research in complicated biological samples.  相似文献   

19.
动物微生态制剂研究应用进展   总被引:1,自引:0,他引:1  
动物微生态制剂是在动物微生态理论指导下,采用已知有益的微生物所制成的生物制品或活菌制剂。综述了动物微生态制剂的产生起源、益生菌和微生态制剂的概念、微生态制剂所用菌株、作用机制、国内外应用现状及发展前景。  相似文献   

20.
Surgical sutures play important role during the wound healing of the surgical sites which are known to be sensitive to microbial infections. Silver nanoparticles (AgNPs) have been recently used as promising agents against multiple-drug resistant microorganisms. This study was designed to coat the sutures with silver nanoparticles obtained via a green synthesis approach. Microbial-mediated biological synthesis of AgNPs were carried out ecofriendly using Streptomyces sp. AU2 cell-free extract and deposited on silk sutures through an in situ process. Sutures coated with biosyntehsized AgNP (bio-AgNP coated sutures) were characterized using Scanning Electron Microscopy (SEM) and elemantal analysis were carried out using Energy Dispersive X-ray Spectroscopy (EDS). The silver amount released by the bio-AgNP coated sutures was calculated by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) throughout a degradation process. Antimicrobial potential of the bio-AgNP coated sutures was determined against common pathogenic microorganisms Candida albicans, Escherichia coli and Staphylococcus aureus. To determine the biocompatibility/cytotoxicty of the bio-AgNP coated sutures, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay was used through an indirect test method; that the elutions obtained by the extraction of the sutures at 1, 4, 8 and 10. days and were placed in contact with 3T3 fibroblast cell culture. To best of our knowledge, this is the first report about coating of the nonabsorbable silk sutures with silver nanoparticles biosynthesized using a microbial extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号