首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cytolytic T lymphocytes (CTL) clones and HLA-A2- and HLA-B7-transfected human, monkey, and mouse cell lines were used to investigate the basis for species-restricted antigen recognition. Most allospecific CTL clones obtained after stimulation with the human JY cell line (source of HLA-A2 and HLA-B7 genomic clones) recognized HLA antigens expressed in human and monkey cell lines but did not recognize HLA expressed in murine cells. By initially stimulating the responder cells with HLA-transfected mouse cells, two CTL clones were obtained that recognized HLA expressed in murine cells. Functional inhibition of these CTL clones with anti-class I monoclonal antibodies (MAb) indicated that clones reactive with HLA+ murine cells were of higher avidity than clones that did not recognize HLA+ murine target cells. MAb inhibition of accessory molecule interactions demonstrated that the LFA-1 and T8 surface molecules were involved in CTL-target cell interactions in all three species. In contrast, the LFA-2/CD2 molecule, previously shown to participate in a distinct activation pathway, was involved in the cytolysis of transfected human and monkey target cells, but not in the lysis of HLA+ murine cells. Thus transfection of HLA genes into different recipient species cell lines provides us with the ability to additionally delineate the functional requirements for allospecific CTL recognition and lysis.  相似文献   

2.
Two long-term cytolytic T lymphocyte (CTL) lines derived from the peripheral blood lymphocytes (PBL) of a single donor were analyzed for target specificity and involvement of cell surface molecules in CTL-target interactions. One line, AH2, was generated after stimulation with B lymphoblastoid cells. Cytolysis by these cells was restricted to targets expressing the appropriate HLA-A2 specificity and was blocked by mAb recognizing CD2, CD3, CD8, LFA-1, and LFA-3. The second line, AE1, was generated after stimulation with cultured endothelial cells derived from human newborn preputial microvessels. These CTL lysed all human target cells tested, except autologous cells and the Class I negative cell line Daudi. In addition, mAb specific for CD2, CD3, and CD8 did not affect cytolysis. Anti-LFA-1 and -LFA-3 mAb blocked cytolysis of B lymphoblastoid targets but not endothelial targets. These results indicate that some CTL utilize as yet uncharacterized cell surface structures for CTL-target interactions.  相似文献   

3.
A variety of molecules are involved in the interaction of human allospecific cytolytic T lymphocytes (CTL) with target cells. Monoclonal antibodies specific for these molecules inhibit CTL-target conjugate formation and/or lysis. To further study recognition and lysis of targets by human CTL, we used a murine mastocytoma cell line transfected with the histocompatibility leukocyte antigen (HLA)-A2 gene (P815-A2+) as a target for human HLA-A2-specific CTL. We find that only a subset of human HLA-A2-specific CTL can lyse murine P815-A2+ cells, suggesting that the murine cells may lack one or more accessory molecules needed for CTL recognition and lysis.  相似文献   

4.
LFA-3 is expressed on a wide variety of human cell lines, including those which have been used as recipients for gene transfer of human class I gene products, whereas a murine counterpart is either absent or significantly different such that the anti-LFA-3 monoclonal antibody (MAb) does not bind. By using a somatic cell genetic approach, we demonstrate that LFA-3 is not a major histocompatibility complex-encoded molecule, and that its gene locus maps to human chromosome 1. When LFA-3 and HLA-A2 are coexpressed on the mouse cell surface, anti-LFA-3 MAb interfered with specific recognition and lysis of these target cells by human CTL capable of lysing HLA-A2-expressing mouse transfectants. A significant contribution of the LFA-3 molecule to CTL reactivity was not observed, however, because the presence of LFA-3 did not restore recognition by CTL clones previously found incapable of lysing HLA-A2-expressing mouse transfectants, nor was it required by those human CTL that could lyse mouse cell transfectants. Thus, we have used genetic techniques to demonstrate that LFA-3 may serve a role in CTL-target cell interactions at the target cell level, but is not a molecule absolutely required for human allospecific CTL recognition of HLA antigens expressed on mouse cells. We suggest that LFA-3 may not participate directly in CTL function under normal circumstances, but delivers a more general inhibitory signal only when provoked by bound MAb.  相似文献   

5.
L cells expressing human HLA-A2 or HLA-B7 class I antigen heavy chains are not recognized by human cytotoxic T lymphocytes directed at HLA-A2 or HLA-B7 antigens. To test whether the absence of human beta 2-m was the cause of the lack of recognition by the human cytotoxic T lymphocytes, coexpression of the human beta 2-m gene and the HLA-A2 or HLA-B7 heavy chain in L cells ("double transfectants") was obtained. In addition, L cells expressing HLA-A2 or HLA-B7 antigens in association with human beta 2-m were obtained by an exchange reaction, in which human beta 2-m from serum replaced the endogenous murine beta 2-m. Both types of transfectant cells were used in 51Cr-release assays and cold target inhibition assays for human cytotoxic T cell clones which were directed at HLA-A2 or HLA-B7. Neither human CTL clones nor a mixture of CTL specific for HLA-A2 and HLA-B7 were able to recognize these cells. Several alternative explanations for these observations are discussed.  相似文献   

6.
The T3 antigen is expressed on all cytotoxic T lymphocytes (CTL). Monoclonal antibodies (MAb) to the T3 antigen previously have been shown to inhibit CTL-mediated killing of cells expressing the relevant target antigens. The mechanism of T3 MAb inhibition, however, remains undefined. In this report, we describe a novel effect of the T3 MAb: the stimulation of allospecific CTL clones to kill target cells that do not express the relevant HLA antigens. The stimulation of nonspecific killing was seen only with MAb to the T3 antigen; MAb to other function-associated antigens (e.g., LFA-1, LFA-2, LFA-3, T4, T8, HLA-A,B,C, and DR) had no effect. T3 MAb stimulated nonspecific killing by CTL clones expressing both the T4+ and T8+ phenotype and by CTL clones specific for both class I and class II HLA alloantigens. Target cell susceptibility to T3 MAb stimulated killing was variable. CTL clones lysed some target cell lines very efficiently (e.g., K562, Daudi, and M124.1) but lysed other cell lines much less efficiently (e.g., 23.1, Mann, and L cells). In CTL-mediated cytotoxicity assays with target cells expressing the relevant HLA antigens, T3 MAb demonstrated the expected inhibition of cytolysis. Thus, the ability of T3 MAb to stimulate and inhibit CTL-mediated cytolysis suggests that both effects may be the result of a common mechanism of activation.  相似文献   

7.
Genes coding for the heavy chain of the class I antigens HLA-A2 or HLA-B7 of the human major histocompatibility complex have been introduced into mouse LtK- cells by cotransfection with the herpes simplex virus thymidine kinase gene. HAT-resistant colonies were isolated expressing either HLA-A2 or HLA-B7 as monitored by indirect immunofluorescence. Immunoprecipitation analysis of both antigens by either sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or isoelectric focusing (IEF) showed that they were identical to the HLA-A2 and HLA-B7 expressed in the human lymphoblastoid cell line JY (homozygous HLA-A2, HLA-B7). However, human cytotoxic T lymphocytes (CTL) generated against JY and CTL clones specific for HLA-A2 or HLA-B7 were unable to recognize the transfectants as targets. These results indicate that the human HLA-A2 (or B7) complexed with the murine beta 2-microglobulin could be an inappropriate target structure for the CTL. However, because the transfectants are not killed by human CTL even in the presence of lectins, it is suggested that other molecules that are not able to overcome the human-mouse species barrier may be involved in the killing mechanism.  相似文献   

8.
The cell surface molecules involved in the human cytolytic T lymphocyte (CTL)-synovial cell interaction may play an important role in T cell interactions with connective tissue mesenchymal cells. To examine the molecular basis for the CTL-synovial cell interaction, we immortalized synovial cell explants to establish the cell line SYN.SPP. The SYN.SPP cell line was compared to the established B lymphoblastoid cell line JY. Cell surface immunofluorescence demonstrated significantly different levels of the immunologically relevant cell surface molecules ICAM-1 and LFA-3. Both cell lines were used to stimulate CTL precursors. After several months in culture, CTL lines stimulated by the SYN.SPP and JY cell lines demonstrated HLA class I-directed cytolytic activity. The cell surface molecules utilized by the anti-SYN.SPP and anti-JY CTL lines were identified by monoclonal antibody (MAb) inhibition. MAb recognizing the CTL cell surface molecules CD3, CD8 and LFA-1 (CD11a) significantly inhibited CTL-mediated lysis of both target cells. An interesting observation was that the anti-SYN.SPP CTL line appeared to utilize the ICAM-1 and not the LFA-3 target cell molecule. In contrast, the anti-JY CTL line utilized the LFA-3 and not the ICAM-1 membrane molecule. These results indicate that CTL interactions with connective tissue mesenchymal cells may be regulated by a unique pattern of antigen nonspecific cell-cell interaction molecules.  相似文献   

9.
We sought additional evidence for an inverse relationship between functional CTL-target cell affinity on the one hand, and susceptibility of the CTL-mediated killing to inhibition by alpha LFA-1 and alpha Lyt-2,3 monoclonal antibodies on the other hand. Previously, we experimentally reduced affinity by pretreating the target cells with papain. This removed most of the class I H-2 antigens, had little effect on the ability of allospecific CTL to recognize and kill these targets, but dramatically reduced the initial strength of CTL-target cell adhesion, and increased by more than 10-fold the susceptibility of the killing to inhibition by alpha Lyt-2,3 and alpha LFA-1 MAb. In the present report, we find that pretreating the target cells with trypsin, like papain, does not significantly change the susceptibility of the target cells to killing by allospecific CTL in a 2-hr assay, and increases by about 10-fold susceptibility of the killing to inhibition by alpha LFA-1. Unlike papain, however, trypsin does not consistently increase blocking by alpha Lyt-2,3, does not remove class I H-2 antigens from the target cell, and does not substantially reduce the strength of initial CTL-target adhesion formation (estimated by post dispersion lysis after a 5-min conjugate-forming incubation). These results show a functional difference between LFA-1 and Lyt-2,3. Both papain and trypsin produced similar 10-fold increases in susceptibility to blocking by alpha LFA-1. In contrast, susceptibility to inhibition by alpha Lyt-2,3 was increased nearly 100-fold by papain, but was not consistently affected by trypsin. Thus, the above-mentioned inverse relationship holds for alpha Lyt-2,3 but not for alpha LFA-1. Our results are consistent with the hypothesis that Lyt-2,3 but not LFA-1 participates in recognition of class I H-2 antigens. Possibly LFA-1 participates in an adhesion-strengthening process that follows T cell recognition, and which may also be used by other LFA-1 expressing leucocytes in intercellular interactions. Finally, our results suggest (for the first time in the mouse system) that an unidentified non-H-2 "trypsin-sensitive counter blocking" molecule on the target cell plays an important role in CTL-target cell interaction.  相似文献   

10.
T cells of two donors, JR (HLA-A23, 29; B7,7; G; DRw5) and HG (HLA-A2, 23; B40, w44; Cw4), were stimulated with cells from an HLA homozygous lymphoblastoid cell line JY (HLA-A2, 2; B7,7, C-, DRw4, 6) and cloned by limiting dilution after the third stimulation. Two cytotoxic T-cell (CTL) clones, JR-2-16 (from donor JR) and HG-31 (from donor HG), were used for detailed studies. The results of a panel study using lymphocytes from HLA-typed individuals and a study with two HLA recombinant families indicate that the antigens recognized by the CTL clones JR-2-16 and HG-31 were highly associated with HLA-A2 and HLA-B7, respectively. Blocking studies with a monoclonal antibody recognizing a framework determinant on HLA-A, -B and-C antigens and a monoclonal antibody reacting with HLA-A2 support the notion that JR-2-16 and HG-31 interact with the HLA-A2 and the HLA-B7 antigens per se. However, these clones did not recognize the HLA-A2 and HLA-B7 of all donors typed for these antigens, suggesting that the HLA-A2 and HLA-B7 antigens of these particular donors are variants of the serologically defined HLA antigens. These results indicate that in vitro-derived human CTL clones detect variations in the serologically defined allospecificities and can be used as reagents to elucidate the polymorphism of HLA antigens further.Abbreviations used in this paper: CTL cytotoxic - T lymphocytes - BSA bovine serum albumin - PHA phytohemagglutinin - Con A concanavalin A.  相似文献   

11.
Eleven cytotoxic T lymphocyte (CTL) clones were derived from C57BL/6 spleen cells immunized with HLA-B7 expressing human lymphoblastoid cell lines. Reactivity against HLA-B7 was initially established because the clones lysed 2 target cells that shared only HLA-B7 with the immunizing cell line and they did not lyse five other cell lines that were HLA-B7 negative but expressed other class I or class II antigens found on the immunizing cell. Six of the clones were subsequently shown to lyse all tested HLA-B7-positive B and T lymphoid cell lines, peripheral blood lymphocytes, and a murine L cell that expressed HLA-B7 as a consequence of DNA-mediated gene transfer. On the basis of the inability of the clones to lyse a panel of HLA-B7-negative cell lines, up to 18 other class I antigens could be eliminated as being cross-reactively recognized. However, two of the clones recognized a single HLA-B7-negative cell line. It is suggested that in these cases the clones were cross-reactively recognizing the HLA-B27 or HLA-B40 antigens that were present on these target cells. The remaining five CTL clones failed to lyse one out of seven tested HLA-B7-positive lymphoid lines (either RPMI-1788 or DR1B) and failed to lyse peripheral blood lymphocytes from one out of three tested HLA-B7-positive individuals. These five clones also did not recognize the HLA-B7-positive murine L cell. However, based on analysis with a large target cell panel, the reactivity pattern of these five clones could only be correlated with recognition of HLA-B7. This conclusion is further supported by antibody-blocking studies to be reported elsewhere. As before, lysis of single HLA-B7-negative target cells by two of the clones could be ascribed to recognition of HLA-B27 or HLA-B40. The results show that murine clones raised against HLA-B7 exhibit a high degree of specificity for determinants that are unique or largely confined to the HLA-B7 alloantigen. In addition, these clones define different antigenic determinants on the molecule. Thus, such clones appear to be excellent candidates for use as human tissue typing reagent. The results further show that there is a strong correlation between recognition of particular HLA-B7-positive human cell lines and recognition of the HLA-B7 expressing murine L cell. Possible reasons for such a correlation and their relationship to the general phenomenon of CTL recognition are discussed.  相似文献   

12.
CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility. The immobilizations were explained by association of MHC I-peptide complexes with ICAM-1 and strongly increased their local concentration in cell adhesion sites and hence their scanning by T cell receptor. In nascent immunological synapses cognate complexes became immobile, whereas noncognate ones diffused out again. Interfering with this mobility modulation-based concentration and sorting of MHC I-peptide complexes strongly impaired the sensitivity of antigen recognition by CTL, demonstrating that it constitutes a new basic aspect of antigen presentation by MHC I molecules.  相似文献   

13.
TCR-gamma delta+ CTL clones were generated from CD4-CD8- T cells that were stimulated twice with the cell line JY. Either IL-2 or IL-4 was used as growth factor. A number of TCR-gamma delta+ clones were found to lyse the stimulator cell line JY. Two of these clones secreted N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase activity after stimulation with JY cells. The cytotoxic activity of these two clones was blocked by a mAb specific for HLA-A2. Moreover, these two TCR-gamma delta+ clones selectively lysed human fibroblast line M1 and murine P815 cells transfected with DNA fragments encoding HLA-A2 but not those transfected with HLA-B7 encoding DNA, indicating that these clones recognize HLA-A2. Analysis of the recognition of HLA-A2 by using target cells transfected with mutated HLA-A2 encoding genes revealed that the nature of the amino acid at position 152 of the molecule is critical for recognition of the TCR-alpha beta+ as well as the TCR-gamma delta+ CTL clones since replacement of Val for Ala at that position resulted in abrogation of recognition of one TCR-gamma delta+ and one TCR-alpha beta+ clone and substitution of Val for Glu affected recognition of all clones. Substitution of Leu for Trp at position 156 abrogated recognition by one TCR-gamma delta+ and one TCR-alpha beta+ T cell clone, but recognition by the other clones was not changed. All clones were able to secrete IL-2, IFN-gamma, and GM-CSF but not IL-4 after activation.  相似文献   

14.
The role of the avidity of human CTL in the recognition and lysis of murine P815 cells expressing HLA-B27.1 Ag has been examined. Seven B27-specific alloreactive CTL clones were tested for their ability to lyse a B27.1+-P815 transfectant clone 1-7E, obtained after cotransfection of P815-HTR cells with HLA-B27.1 and human beta 2-microglobulin genes. The expression level of HLA-B27.1 on 1-7E cells was comparable to that on a human lymphoblastoid cell line, as determined by flow cytometry. Of the seven CTL clones used, CTL 1, 26, and 29 displayed the same fine specificity as established with a panel of target cells expressing six structurally different HLA-B27 variants. However, CTL 1 and 29 were of higher avidity than CTL 26, in that the lysis of human target cells by only this latter clone was inhibited by an anti-CD8 mAb. Based on the same criteria, CTL 2, 15, and 48 possessed the same or very similar fine specificity, but CTL 48 was of higher avidity than CTL 2 or 15. The seventh clone, CTL 40, was of a different fine specificity and its lysis of human target cells was also inhibited by the same anti-CD8 mAb. Only those clones whose lysis of human targets could not be inhibited by anti-CD8 antibody were able to lyse the 1-7E murine transfectants. These results indicate that, for human CTL clones with identical or very similar fine specificity, only those of higher avidity are able to lyse P815 murine cells expressing the HLA-B27 antigen. The lysis of HLA-B27.1+-murine transfectants by relevant clones was inhibited by anti-CD8 antibody. This result strongly suggests that the relative contribution of CD8 in stabilizing the interaction between human CTL and HLA-B27+-murine target cells is more significant than with human target cells.  相似文献   

15.
The cytotoxic reaction mediated by cytotoxic T lymphocytes (CTL) consists of three phases: first, the CTL binds to the target cell; next, the CTL is triggered to lyse the target cell; and in the third phase, the CTL detaches from the target cell which is lysed in the absence of the CTL. Recently, we obtained evidence that human alloreactive CTL clones initially adhere to target cells without the involvement of the interaction between the T cell receptor (Tcr) and its specific target antigen. In the present study, we investigated the effect of monoclonal antibodies specific for the Tcr on the cytotoxic reaction of three CD8+ HLA-A2-specific CTL clones, using a single cell assay in which the binding event can be distinguished from the post-binding (lytic) phase of the cytolytic reaction. It was found that monoclonal antibodies directed at a variable part of the Tcr do not affect the binding phase but strongly block the lytic phase of the cytotoxic reaction. An anti-constant region Tcr antibody and an anti-CD3 reagent had a similar effect on the two phases of the reaction as the anti-variable part Tcr antibodies. In contrast, antibodies specific for LFA-1 strongly blocked the adhesion phase but did not affect the lytic phase. Antibodies specific for CD-8 had intermediate effects. They could block both the adhesion as well as the lytic phase. The effect of anti-CD8 appeared to be dependent on the CTL clone tested. One clone was found to be inhibited in the adhesion phase, but not in the lytic phase, whereas anti-CD8 hardly blocked the adhesion phase of two other CTL clones, but affected the lytic step of those clones. Our data indicate that LFA-1 is a major adhesion molecule in the CTL reaction, whereas the Tcr/CD3 complex is implicated in a phase after the initial formation of conjugates. CD8 is associated with both steps in the cytolytic reaction. In addition to its minor role in the adhesion phase, our data suggest strongly that CD-8 is involved in the triggering phase of the cytolytic reaction.  相似文献   

16.
The lysis by allospecific cytolytic T lymphocytes (CTL) of the BALB/c lymphoma ST-4.5, a cell line that can be induced by interferon-gamma (IFN-gamma) to express increased amounts of major histocompatibility complex (MHC) class I antigens, was investigated. Culture of ST-4.5 in IFN-gamma increased the surface expression of Kd molecules from originally low levels and Dd from undetectable amounts by approximately fivefold as determined by fluorescence-activated cell sorter (FACS) analysis, whereas the levels of several other antigens (Ld, I-Ad, Thy-1, Lyt-2, L3T4, and LFA-1) were not affected. The lysis of ST-4.5 by Dd- and Ld-specific CTL clones correlated with the expression of those antigens on target cells as determined by both FACS and biochemical analysis. Lysis of ST-4.5 by CTL clones specific for Kd antigen fell into two distinct groups: those that could lyse targets cultured either normally or in IFN-gamma, and those that could only lyse targets that had been precultured in IFN-gamma. The apparent sensitivity to antigen exhibited by the Kd-specific CTL clones predicted their sensitivity to inhibition of target lysis by anti-Lyt-2/3 antibody. Those CTL clones that were only active against ST-4.5 expressing higher amounts of surface antigen (resulting from IFN-gamma preculture) were readily inhibited by anti-Lyt-2/3 antibody, whereas those CTL capable of lysing normally cultured targets having lower amounts of surface antigen were heterogeneous in their sensitivity to anti-Lyt-2/3; some were inhibitable, whereas others were resistant. In addition, another CTL clone that was resistant to inhibition by anti-Lyt-2/3 alone was readily inhibited by a synergistic combination of anti-Lyt-2/3 plus anti-Kd (but not anti-Dd or Ld) antibodies. These results indicate that CTL antigen receptor sensitivity to (or affinity for) antigen and the level of specific antigen expression by the target cell may both be important criteria in assessing Lyt-2/3 molecule function in CTL-mediated cytolysis. The function of recognition-associated molecules such as Lyt-2/3 may be to strengthen and increase the number of receptor-ligand binding events that facilitate CTL-target membrane interactions that lead to the lysis of the target cell.  相似文献   

17.
We have used a panel of human HLA-B7-specific CTL clones to identify an HLA-B7 gene (JY150) transfected into human M1 fibroblasts (M1/B7). Only a subset of the CTL clones recognized the M1/B7 cells, whereas all CTL clones recognized the donor of the B7 gene, the cell line JY (HLA-A2,2;B7,7;Cw-,-;DR4,w6). Analysis of the fine specificity of these CTL clones was performed by testing the reactivity on M1 cells transfected with an HLA-B27K gene and on a panel of cell lines typed for HLA-B7 subtypes (variants). These results, combined with one-dimensional IEF analysis of the M1/B7 cells and the B7 subtypes, indicated that the differential recognition by the CTL clones of the transfected gene was not caused by aberrant expression of the gene itself or due to the absence of critical accessory molecules on the M1 fibroblast cells. Our data suggest that the widely used HLA-B7 reference cell line JY is not homozygous at the HLA-B locus, but contains two different B7 alleles encoding the B7.2 and B7.4 subtypes.  相似文献   

18.
HLA-A2 specific human cytotoxic T lymphocytes (CTL) cell lines have been developed using T cell growth factor and coculture of peripheral blood lymphocytes with selected allogeneic target cell lines. The CTL-8 line showed specificity for human leukocyte antigens (HLA)-A2 bearing target cells after 5 weeks in culture when tested against a panel of 14 lymphoblastoid cell lines in a 51Chromium (51Cr) release assay. Purified anti-human leukocyte antigens (HLA) monoclonal antibodies W6/32 and PA2.1 inhibited cytolysis by 85% and 60%, respectively. The CTL-8 line lysed non-HLA-A2 target cells in the presence of lectins concanavalin A (Con A) or phytohemagglutinin-P lectin (PHA-P) indicating the specificity of cytolysis was not due to nonspecific resistance of target cells to the CTL-lytic mechanism. The T5-1 HLA-A2 mutant cell series were tested as targets for the CTL-8 line. Cell clones 8.18.1, 8.21.1 and 8.6.1, which express altered HLA-A2 molecules as determined by their decreased reactivity with allospecific monoclonal antibodies, were lysed by the CTL-8 line as efficiently as the T5-1 wild type. These cell lines also acted as efficient cold target competitors for a normal HLA-A2 target cell. The 8.14.1 cell clone expressed a lower amount of HLA-A2 alloantigen and showed a corresponding decreased reactivity with CTL-8 in direct cytolytic and cold target competitive inhibition assays. In contrast, the M7 and DK1 HLA-A2 variant cell lines, which express normal HLA-A2 serological determinants, were inefficiently lysed by CTL-8 and did not act as competitive inhibitors of normal HLA-A2 target cells. These results support the concept that the alloantigenic determinant(s) recognized by T cells and antibodies occur at separate regions on the HLA-A2 molecule.  相似文献   

19.
Three HLA-B27 allospecific cytolytic T lymphocyte (CTL) clones were isolated by limiting dilution of HLA-B27-negative responder cells stimulated with HLA-B27.1-positive lymphoblastoid cells. These clones displayed three distinct reaction patterns when tested for their lytic ability against target cells expressing various structurally defined HLA-B27 subtypes. One of the clones was specific for HLA-B27.1; a second CTL clone reacted only with B27.1 and, less efficiently, with B27.2; the third clone recognized both B27.1 and B27f targets but not cells expressing any other B27 subtype. These results indicate that HLA-B27f is a functional variant amenable to differential recognition by alloreactive CTL. A correlation of the structure of the HLA-B27 subtypes with the reactivity of these clones revealed that multiple B27-specific alloreactive CTL are activated against epitopes of the HLA-B27.1 molecule sharing common structural features. This illustrates the complexity and fine specificity of the allogeneic CTL response against class I HLA antigens and suggests that their immunodominant regions are those which are capable of eliciting a diverse polyclonal response against each of these regions, rather than inducing the selective expansion of a single T cell clone.  相似文献   

20.
Accessory molecules present on the cell surface of cytolytic T lymphocytes (CTL) play an important role in their activation. Antigen-specific recognition by CTL is inhibited by antibodies against Lyt-2, L3T4, or LFA-1 molecules. Presently it is not known whether these molecules function by binding a ligand such as class I or class II on the target cell or by delivering a signal that down-regulates T cell activation. In the present study we utilized anti-T cell antibodies including anti-T3 and anti-T cell receptor (alpha/beta) as well as an anti-Ly-6.2C monoclonal antibody to activate CTL clones to kill irrelevant targets or secrete BLT esterase. The redirected lysis assay system utilizes the fact that heteroconjugates between anti-T3, and anti-T cell receptor, or anti-Ly-6.2C and anti-trinitrophenyl can trigger CTL lysis of trinitrophenyl-coupled targets that did not express antigen. In this system anti-Lyt-2 antibodies as well as anti-LFA-1 antibodies inhibited triggering via T cell receptor-related molecules but not via the anti-Ly-6.2C heteroconjugate. In addition, the anti-Lyt-2 was shown to inhibit conjugate formation in the heteroaggregate assay system suggesting that the anti-Lyt-2 antibodies acted early in inhibiting CTL activity. Similar results were observed in a system in which the CTL clones were triggered to secrete a BLT-esterase-like activity in the absence of target cells. Anti-T3 coated on plastic was shown to activate BLT-esterase secretion. This secretion was inhibited by anti-Lyt-2 and anti-LFA-1. Thus, it would appear that both the Lyt-2 molecule and the LFA-1 molecule act as signal-transducing elements involved in CTL activation. In particular, the Lyt-2 molecule appears to preferentially function in receptor-mediated T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号