首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally accepted that an aphidicolin-sensitive DNA polymerase elongates the eucaryotic RNA primer (iRNA) into a mature Okazaki piece reaching ca. 200 nucleotides. Yet, as shown here, nascent DNA chains below 40 nucleotides accumulated in simian virus 40 (SV40) DNA replicating in isolated nuclei in the presence of aphidicolin. These products resembled precursors of longer Okazaki pieces synthesized in the absence of aphidicolin (termed here DNA primers) in size distribution, lagging-replication-fork polarity, and content of iRNA. Within the isolated SV40 replicative intermediate, DNA primers could be extended in a reaction catalyzed by the Escherichia coli DNA polymerase I large fragment. This increased their length by an average of 21 deoxyribonucleotide residues, indicating that single-stranded gaps of corresponding length existed 3' to the DNA primers. Incubation with T4 DNA ligase converted most of the extended DNA primers into products resembling long Okazaki pieces. These data led us to propose that the synthesis of an SV40 Okazaki piece could be itself discontinuous and could comprise the following steps: (i) iRNA synthesis by DNA primase, (ii) iRNA extension into a DNA primer by an aphidicolin-resistant activity associated with DNA primase-DNA polymerase alpha, (iii) removal of iRNA moieties between adjacent DNA primers, (iv) "gap filling" between DNA primers by the aphidicolin-sensitive DNA polymerase alpha, and (v) ligation of DNA primer units onto a growing Okazaki piece. Eventually, a mature Okazaki piece is ligated onto a longer nascent DNA chain.  相似文献   

2.
Recent findings in purified systems demonstrate the universality of DNA polymerase-primase complexes which may function in the priming and continuation of eucaryotic DNA replication. In this report we characterize an in vitro, nuclear matrix-associated, priming and continuation system that can utilize either endogenous matrix-bound DNA or exogenous single-stranded DNA as template. 30-40% of total nuclear DNA primase activity was recovered in association with the isolated nuclear matrix fraction from regenerating rat liver. Matrix-bound primase catalyzed the alpha-amanitin, actinomycin D-resistant synthesis of oligonucleotide chains of 8-50 nucleotides on the endogenous template. At least a portion of the RNA primers were continued by DNA polymerase alpha with deoxynucleoside triphosphate incorporation up to 300-600 nucleotides. Nearest neighbor analysis revealed ribodeoxynucleotide covalent linkages in these RNA-DNA chains. The matrix-bound primase preferred single-stranded fd DNA as exogenous template over synthetic homopolymers and was strictly dependent on the presence of ribonucleoside triphosphates. Appropriate subfractionation revealed that the matrix-bound primase activity is exclusively localized in the nuclear matrix interior. The ability of primase and DNA polymerase to synthesize covalently linked RNA-DNA products demonstrates the potentially useful role of the nuclear matrix in vitro system for elucidating the organizational and functional properties of the eucaryotic replication apparatus in the cell nucleus.  相似文献   

3.
Cell-free extracts of simian virus 40 (SV40)-infected CV-1 cells can initiate large tumor antigen dependent bidirectional replication in circular DNA molecules containing a functional SV40 origin of replication (ori). To determine whether or not DNA replication under these conditions involves RNA-primed DNA synthesis, replication was carried out in the presence of 5-mercuri-deoxycytidine triphosphate to label nascent DNA chains. Newly synthesized mercurated DNA was isolated by its affinity for thiol-agarose, and the 5'-ends of the isolated chains were radiolabeled to allow identification of RNA primers. At least 50% of the isolated chains contained 4 to 7 ribonucleotides covalently linked to their 5'-end; 80% of the oligoribonucleotides began with adenosine and 19% began with guanosine. About 60% of the nascent DNA chains annealed to the SV40 ori region, and about 80% of these chains were synthesized in the same direction as early mRNA. These results are consistent with the properties of SV40 DNA replication in vivo and support a model for initiation of SV40 DNA replication in which DNA primase initiates DNA synthesis on that strand of ori that encodes early mRNA.  相似文献   

4.
5.
Yeast DNA primase and DNA polymerase I can be purified by immunoaffinity chromatography as a multipeptide complex which can then be resolved into its functional components and further reassembled in vitro. Isolated DNA primase synthesizes oligonucleotides of a preferred length of 9-10 nucleotides and multiples thereof on a poly(dT) template. In vitro reconstitution of the DNA primase:DNA polymerase complex allows the synthesis of long DNA chains covalently linked to RNA initiators shorter than those synthesized by DNA primase alone. The SS (single-stranded) circular DNA of phage M13mp9 can also be replicated by the DNA primase:DNA polymerase complex. Priming by DNA primase occurs at multiple sites and the initiators are utilized by the DNA polymerase moiety of the complex, so that almost all the SS template is converted into duplex form. The rate of DNA synthesis catalyzed by isolated yeast DNA polymerase I on the M13mp9 template is not constant and is characterized by distinct pausing sites, which partly correlate with secondary structures on the template DNA. Thus, replication of M13mp9 SS DNA with the native primase:polymerase complex gives rise to a series of DNA chains with significantly uniform termini specified by the primase start sites and the polymerase stop sites.  相似文献   

6.
7.
The influence of poly(ADP-ribose) polymerase (PARP) on the replication of DNA containing the SV40 origin of replication has been examined. Extensive replication of SV40 DNA can be carried out in the presence of T antigen, topoisomerase I, the multimeric human single strand DNA-binding protein (HSSB), and DNA polymerase alpha-DNA primase (pol alpha-primase) complex (the monopolymerase system). In the monopolymerase system, both small products (Okazaki fragments), arising from lagging strand synthesis, and long products, arising from leading strand synthesis, are formed. The synthesis of long products requires the presence of relatively high levels of pol alpha-primase complex. In the presence of PARP, the synthesis of long products was blocked and only small Okazaki fragments accumulated, arising from the replication of the lagging strand template. The inhibition of leading strand synthesis by PARP can be effectively reversed by supplementing the monopolymerase system with the multimeric activator 1 protein (A1), the proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta (the dipolymerase system). The inhibition of leading strand synthesis in the monopolymerase system was caused by the binding of PARP to the ends of DNA chains, which blocked their further extension by pol alpha. The selective accumulation of Okazaki fragments was shown to be due to the coupled synthesis of primers by DNA primase and their immediate extension by pol alpha complexed to primase. PARP had little effect on this coupled reaction, but did inhibit the subsequent elongation of products, presumably after pol alpha dissociated from the 3'-end of the DNA fragments. PARP inhibited several other enzymatic reactions which required free ends of DNA chains. PARP inhibited exonuclease III, DNA ligase, the 5' to 3' exonuclease, and the elongation of primed DNA templates by pol alpha. In contrast, PARP only partly competed with the elongation of primed DNA templates by the pol delta elongation system which required SSB, A1, and PCNA. These results suggest that the binding of PARP at the ends of nascent DNA chains can be displaced by the binding of A1 and PCNA to primer ends. HSSB can be poly(ADP-ribosylated) in vivo as well as in vitro. However, the selective effect of PARP in blocking leading strand synthesis in the monopolymerase system was shown to depend primarily on its DNA binding property rather than on its ability to synthesize poly(ADP-ribose).  相似文献   

8.
9.
In marked contrast to simian virus 40 (SV40), polyoma virus (PyV) has been reported to replicate discontinuously on both arms of replication forks. In an effort to clarify the relationship between the mechanisms of DNA replication in these closely related viruses, the distribution of RNA-primed DNA chains at replication forks was examined concurrently in PyV and SV40 replicating DNA purified from virus-infected cells. About one third of PyV DNA chains contained 7 to 9 ribonucleotides covalently linked to their 5'-end. A similar fraction of DNA chains from replicating SV40 DNA contained an oligoribonucleotide that was 6 to 9 residues long and began with either (p)ppA or (p)ppG. Greater than 80% of PyV or SV40 RNA-primed DNA chains hybridized specifically to the retrograde template. Moreover, at least 95% of the RNA-primed DNA chains from either PyV or SV40 whose initiation sites could be mapped to unique nucleotide locations originated from the retrograde template. Therefore, PyV and SV40 DNA replication forks are essentially the same; DNA synthesis is discontinuous predominantly, if not exclusively, on the retrograde template.  相似文献   

10.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

11.
Murine cells or cell extracts support the replication of plasmids containing the replication origin (ori-DNA) of polyomavirus (Py) but not that of simian virus 40 (SV40), whereas human cells or cell extracts support the replication of SV40 ori-DNA but not that of Py ori-DNA. It was shown previously that fractions containing DNA polymerase alpha/primase from permissive cells allow viral ori-DNA replication to proceed in extracts of nonpermissive cells. To extend these observations, the binding of Py T antigen to both the permissive and nonpermissive DNA polymerase alpha/primase was examined. Py T antigen was retained by a murine DNA polymerase alpha/primase but not by a human DNA polymerase alpha/primase affinity column. Likewise, a Py T antigen affinity column retained DNA polymerase alpha/primase activity from murine cells but not from human cells. The murine fraction which bound to the Py T antigen column was able to stimulate Py ori-DNA replication in the nonpermissive extract. However, the DNA polymerase alpha/primase activity in this murine fraction constituted only a relatively small proportion (approximately 20 to 40%) of the total murine DNA polymerase alpha/primase that had been applied to the column. The DNA polymerase alpha/primase purified from the nonbound murine fraction, although far more replete in this activity, was incapable of supporting Py DNA replication. The two forms of murine DNA polymerase alpha/primase also differed in their interactions with Py T antigen. Our data thus demonstrate that there are two distinct populations of DNA polymerase alpha/primase in murine cells and that species-specific interactions between T antigen and DNA polymerases can be identified. They may also provide the basis for initiating a novel means of characterizing unique subpopulations of DNA polymerase alpha/primase.  相似文献   

12.
13.
Human cell extracts efficiently support replication of simian virus 40 (SV40) DNA in vitro, while mouse cell extracts do not. Since human DNA polymerase alpha-primase is the major species-specific factor, we set out to determine the subunit(s) of DNA polymerase alpha-primase required for this species specificity. Recombinant human, mouse, and hybrid human-mouse DNA polymerase alpha-primase complexes were expressed with baculovirus vectors and purified. All of the recombinant DNA polymerase alpha-primases showed enzymatic activity and efficiently synthesized the complementary strand on an M13 single-stranded DNA template. The human DNA polymerase alpha-primase (four subunits [HHHH]) and the hybrid DNA polymerase alpha-primase HHMM (two human subunits and two mouse subunits), containing human p180 and p68 and mouse primase, initiated SV40 DNA replication in a purified system. The human and the HHMM complex efficiently replicated SV40 DNA in mouse extracts from which DNA polymerase alpha-primase was deleted, while MMMM and the MMHH complex did not. To determine whether the human p180 or p68 subunit was required for SV40 DNA replication, hybrid complexes containing only one human subunit, p180 or p68, together with three mouse subunits (HMMM and MHMM) or three human subunits and one mouse subunit (MHHH and HMHH) were tested for SV40 DNA replication activity. The hybrid complexes HMMM and HMHH synthesized oligoribonucleotides in the SV40 initiation assay with purified proteins and replicated SV40 DNA in depleted mouse extracts. In contrast, the hybrid complexes containing mouse p180 were inactive in both assays. We conclude that the human p180 subunit determines host-specific replication of SV40 DNA in vitro.  相似文献   

14.
Studies of simian virus 40 (SV40) DNA replication in a reconstituted cell-free system have established that T antigen and two cellular replication proteins, replication protein A (RP-A) and DNA polymerase alpha-primase complex, are necessary and sufficient for initiation of DNA synthesis on duplex templates containing the SV40 origin of DNA replication. To better understand the mechanism of initiation of DNA synthesis, we analyzed the functional interactions of T antigen, RP-A, and DNA polymerase alpha-primase on model single-stranded DNA templates. Purified DNA polymerase alpha-primase was capable of initiating DNA synthesis de novo on unprimed single-stranded DNA templates. This reaction involved the synthesis of a short oligoribonucleotide primer which was then extended into a DNA chain. We observed that the synthesis of ribonucleotide primers by DNA polymerase alpha-primase is dramatically stimulated by SV40 T antigen. The presence of T antigen also increased the average length of the DNA product synthesized on primed and unprimed single-stranded DNA templates. These stimulatory effects of T antigen required direct contact with DNA polymerase alpha-primase complex and were most marked at low template and polymerase concentrations. We also observed that the single-stranded DNA binding protein, RP-A, strongly inhibits the primase activity of DNA polymerase alpha-primase, probably by blocking access of the enzyme to the template. T antigen partially reversed the inhibition caused by RP-A. Our data support a model in which DNA priming is mediated by a complex between T antigen and DNA polymerase alpha-primase with the template, while RP-A acts to suppress nonspecific priming events.  相似文献   

15.
Aphidicolin, a specific inhibitor of DNA polymerase alpha, provided a novel method for distinguishing between initiation of DNA synthesis at the simian virus 40 (SV40) origin of replication (ori) and continuation of replication beyond ori. In the presence of sufficient aphidicolin to inhibit total DNA synthesis by 50%, initiation of DNA replication in SV40 chromosomes or ori-containing plasmids continued in vitro, whereas DNA synthesis in the bulk of SV40 replicative intermediate DNA (RI) that had initiated replication in vivo was rapidly inhibited. This resulted in accumulation of early RI in which most nascent DNA was localized within a 600- to 700-base-pair region centered at ori. Accumulation of early RI was observed only under conditions that permitted initiation of SV40 ori-dependent, T-antigen-dependent DNA replication and only when aphidicolin was added to the in vitro system. Increasing aphidicolin concentrations revealed that DNA synthesis in the ori region was not completely resistant to aphidicolin but simply less sensitive than DNA synthesis at forks that were farther away. Since DNA synthesized in the presence of aphidicolin was concentrated in the 300 base pairs on the early gene side of ori, we conclude that the initial direction of DNA synthesis was the same as that of early mRNA synthesis, consistent with the model proposed by Hay and DePamphilis (Cell 28:767-779, 1982). The data were also consistent with initiation of the first DNA chains in ori by CV-1 cell DNA primase-DNA polymerase alpha. Synthesis of pppA/G(pN)6-8(pdN)21-23 chains on a single-stranded DNA template by a purified preparation of this enzyme was completely resistant to aphidicolin, and further incorporation of deoxynucleotide monophosphates was inhibited. Therefore, in the presence of aphidicolin, this enzyme could initiate RNA-primed DNA synthesis at ori first in the early gene direction and then in the late gene direction, but could not continue DNA synthesis for an extended distance.  相似文献   

16.
Characterization of a DNA primase from rat liver mitochondria   总被引:2,自引:0,他引:2  
A DNA primase was partially purified from rat liver mitochondria and separated from the bulk of DNA polymerase gamma and mtRNA polymerase by heparin-agarose chromatography. The primase was distinguished from mtRNA polymerase by its response to pH, monoand divalent cations, and ATP concentrations. In the absence of an active DNA polymerase and using poly(dT) as template, primase synthesized mixed polynucleotide products consisting of units of oligo(A) 1-12 alternating with units of oligo(dA)25-40. Contributions to these products by contaminating DNA polymerase gamma were eliminated by the addition of dideoxy-ATP. Addition of 50 microM dATP to the primase reaction caused a 50% inhibition of AMP incorporation as compared to reactions containing low levels of dATP present only as a contaminant of the ATP added. The inhibition was due primarily to a reduction of new chain initiations. The dATP did not "lock" the primase reaction into the DNA mode of synthesis since the proportion of internal and 3'-terminal RNA segments was little affected. However, the addition of both 50 microM dATP and exogenous DNA polymerase to the primase reaction greatly reduced the amount of internal and 3'-terminal RNA segments, presumably due to the displacement of primase by DNA polymerase. Our data are consistent with the hypothesis (Hu, S.-Z., Wang, T.S.-F., and Korn, D. (1984) J. Biol. Chem. 259, 2602-2609) that the physiologically significant primer is a mixed 5'-oligoribonucleotide-3'-oligodeoxyribonucleotide and that the formation of the RNA to DNA junction is inherently a primase function.  相似文献   

17.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A DNA primase from yeast. Purification and partial characterization   总被引:5,自引:0,他引:5  
A DNA primase activity has been purified from the budding yeast Saccharomyces. The resulting preparation was nearly homogeneous and was devoid of DNA and RNA polymerase activities. The primase activity cofractionated with a Mr 65,000 polypeptide in sedimentation and chromatography procedures, and the native molecular weight of the enzyme corresponded closely to this value suggesting that the primase or an active proteolytic fragment of the protein exists as a monomer. Both heat-denatured calf thymus DNA and poly(dT) could be utilized by the enzyme as templates. Primase exhibited an absolute requirement for divalent cations and for rATP on a poly(dT) template. Although it required the ribonucleotide to initiate primer chains, the enzyme could incorporate the deoxynucleotide into primers. The product of the primase-catalyzed reaction was an oligonucleotide of discrete length (11-13 nucleotides), and oligonucleotides that were apparently dimers of this unit length were also observed. Primers that were synthesized were virtually identical in size in both the presence and absence of dATP incorporation. Although the bulk of DNA primase activity was isolated as a "free" enzyme, a portion of cellular primase activity co-chromatographed with DNA polymerase suggesting an association between these enzymes similar to that found in several higher eukaryotes.  相似文献   

19.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

20.
Exonucleases specific for either 3' ends (Escherichia coli exonuclease III) or 5' ends (bacteriophage T7 gene 6 exonuclease) of nascent DNA chains have been used to determine the number of nucleotides from the actual sites of DNA synthesis to the first nucleosome on each arm of replication forks in simian virus 40 (SV40) chromosomes labeled with [3H]thymidine in whole cells. Whereas each enzyme excised all of the nascent [3H]DNA from purified replicating SV40 DNA, only a fraction of the [3H]DNA was excised from purified replicating SV40 chromosomes. The latter result was attributable to the inability of either exonuclease to digest nucleosomal DNA in native replicating SV40 chromosomes, as demonstrated by the following observations: (i) digestion with either exonuclease did not reduce the amount of newly synthesized nucleosomal DNA released by micrococcal nuclease during a subsequent digestion period; (ii) in briefly labeled molecules, as much as 40% of the [3H]DNA was excised from long nascent DNA chains; (iii) the fraction of [3H]DNA excised by exonuclease III was reduced in proportion to the actual length of the radiolabeled DNA; (iv) the effects of the two exonucleases were additive, consistent with each enzyme trimming only the 3' or 5' ends of nascent DNA chains without continued excision through to the opposite end. When the fraction of nascent [3H]DNA excised from replicating SV40 DNA by exonuclease III was compared with the fraction of [32P]DNA simultaneously excised from an SV40 DNA restriction fragment, the actual length of nascent [3H]DNA was calculated. From this number, the fraction of [3H]DNA excised from replicating SV40 chromosomes was converted into the number of nucleotides. Accordingly, the average distance from either 3' or 5' ends of long nascent DNA chains to the first nucleosome on either arm of replication forks was found to be 125 nucleotides. Furthermore, each exonuclease excised about 80% of the radiolabel in Okazaki fragments, suggesting that less than one-fifth of the Okazaki fragments were contained in nucleosomes. On the basis of these and other results, a model for eukaryotic replication forks is presented in which nucleosomes appear rapidly on both the forward and retrograde arms, about 125 and 300 nucleotides, respectively, from the actual site of DNA synthesis. In addition, it is proposed that Okazaki fragments are initiated on nonnucleosomal DNA and then assembled into nucleosomes, generally after ligation to the 5' ends of long nascent DNA chains is completed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号