首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional Agrobacterium-mediated plant transformation often produces a significant frequency of transgenic events containing vector backbone sequence, which is generally undesirable for biotechnology applications. We tested methods to reduce the frequency of transgenic plants containing vector backbone by incorporating genes into the backbone that inhibit the development of transgenic plants. Four backbone frequency reduction genes, bacterial levansucrase (sacB), maize cytokinin oxidase (CKX), Phaseolus GA 2-oxidase (GA 2-ox), and bacterial phytoene synthase (crtB), each expressed by the enhanced CaMV 35S promoter, were placed individually in a binary vector backbone near the left border (LB) of binary vectors. In transformed soybean plants, the lowest frequency of backbone presence was observed when the constitutively expressed CKX gene was used, followed by crtB. Higher backbone frequencies were found among the plants transformed with the GA 2-oxidase and sacB vectors. In some events, transfer of short backbone fragments appeared to be caused by LB readthrough and termination within the backbone reduction gene. To determine the effect of the backbone genes on transformation frequency, the crtB and CKX vectors were then compared to a control vector in soybean transformation experiments. The results revealed that there was no significant transformation frequency difference between the crtB and control vectors, but the CKX vector showed a significant transformation frequency decrease. Molecular analysis revealed that the frequency of transgenic plants containing one or two copies of the transgene and free of backbone was significantly increased by both the CKX and crtB backbone reduction vectors, indicating that there may be a correlation between transgene copy number and backbone frequency.  相似文献   

2.
Conventional Agrobacterium-mediated transformation methods rely on complex and genotype-specific tissue culture media for selection, proliferation, and regeneration of genetically modified cells. Resulting transgenic plants may not only contain selectable marker genes but also carry fragments of the vector backbone. Here, we describe a new method for the production of transgenic plants that lack such foreign DNA. This method employs vectors containing the bacterial isopentenyltransferase (ipt) gene as backbone integration marker. Agrobacterium strains carrying the resulting ipt gene-containing "cytokinin" vectors were used to infect explants of various Solanaceous plant species as well as canola (Brassica napus). Upon transfer to hormone-free media, 1.8% to 9.9% of the infected explants produced shoots that contained a marker-free T-DNA while lacking the backbone integration marker. These frequencies often equal or exceed those for backbone-free conventional transformation.  相似文献   

3.
A binary vector, designated PROGMO, was constructed to assess the potential of the Zygosaccharomyces rouxii R/Rs recombination system for generating marker- and backbone-free transgenic potato (Solanum tuberosum) plants with high transgene expression and low copy number insertion. The PROGMO vector utilises a constitutively expressed plant-adapted R recombinase and a codA-nptII bi-functional, positive/negative selectable marker gene. It carries only the right border (RB) of T-DNA and consequently the whole plasmid will be inserted as one long T-DNA into the plant genome. The recognition sites (Rs) are located at such positions that recombinase enzyme activity will recombine and delete both the bi-functional marker genes as well as the backbone of the binary vector, leaving only the gene of interest flanked by a copy of Rs␣and RB. Efficiency of PROGMO transformation was tested by introduction of the GUS reporter gene into potato. It was shown that after 21 days of positive selection and using 300 mgl−1 5-fluorocytosine for negative selection, 29% of regenerated shoots carried only the GUS gene flanked by a copy of Rs and RB. The PROGMO vector approach is simple and might be widely applicable for the production of marker- and backbone-free transgenic plants of many crop species.  相似文献   

4.
Selectable marker genes are needed for efficient transformation of plants. The present study focused on testing the applicability of green fluorescent protein (GFP) for selecting transgenic Petunia hybrida plants without applying antibiotics or herbicides. Based on a transient gene expression assay, the efficiency of two gfp genes, mGFP-4 and smRS-GFP, was compared. Two days after infiltration of Agrobacterium tumefaciens, GFP expression was recorded in leaf epidermal cells. The intensity of smRS-GFP fluorescence was higher than that of mGFP-4 and easier to distinguish from other unspecific fluorescent signals in Petunia. Transformations using the pMen65smRS-GFP vector, which contained the neomycin phosphotransferase II (nptII) gene, resulted in callus and shoots that visually and clearly expressed detectable GFP levels; in addition, this vector made it possible to exclusively select transformed plants using GFP. The transformation efficiencies achieved by using GFP selection versus combined kanamycin and GFP selection (nptII+GFP) were compared in four Petunia genotypes with a transformation experiment with four replications. In three out of four Petunia cultivars a higher transformation frequency was achieved by using nptII+GFP selection. Southern blot hybridisation revealed single and multiple integrations of smRS-GFP in Petunia. Single copy plants showed intensive expression in all parts of the plants, whereas a higher copy number led to only weak or partial expression of smRS-GFP allowing the visual selection of single copy events. Thus, it is possible to select transgenic Petunia plants based on their GFP expressions without applying antibiotics or herbicides.  相似文献   

5.
A modified low copy number plant binary vector pUN has been constructed and successfully used to clone unstable DNA sequences. The vector pUN comprises of low copy number, broad host range RK2 replicon from pBin19 and of multiple cloning site (MCS) and T-DNA region, both from a pBINPLUS-derived pLV06 vector. The absence of the ColE1 replicon in the backbone of the binary vector significantly contributed to stability of hardly clonable DNA sequences and enabled their transfer into the tobacco plants through Agrobacterium-mediated transformation.  相似文献   

6.
Large DNA fragments were transferred to rice (Oryza sativa L.) by an Agrobacterium-mediated transformation protocol using the binary bacterial artificial chromosome (BIBAC) vector system. Calli derived from mature embryos of japonica rice cultivar H1493 were used as target tissues. LBA4404 with the pCH32 helper plasmid carrying virE and virG was found to be the most efficient strain for the transfer of large DNA fragment into the rice genome. One notable difference between Agrobacterium-mediated transformation using standard binary vectors and that reported herein was that transformation using the BIBAC system required Agrobacterium tumefaciens carrying the virulence helper plasmid with virG/virE. Polymerase chain reaction, Southern blot, and progeny analyses confirmed the integration and inheritance of the insert fragment and marker genes carried by BIBAC in the T0, T1, and T2 generations of transgenic events. To our knowledge, this represents the first report in which fertile, stable transgenic rice has been produced using the BIBAC vector system. The transformation system developed here would be useful for transferring large DNA fragments and for cloning and functional analysis of genes in rice.  相似文献   

7.

Key message

Improving Agrobacterium -mediated transformation frequency and event quality by increasing binary plasmid copy number and appropriate strain selection is reported in an elite maize cultivar.

Abstract

Agrobacterium-mediated maize transformation is a well-established method for gene testing and for introducing useful traits in a commercial biotech product pipeline. To develop a highly efficient maize transformation system, we investigated the effect of two Agrobacterium tumefaciens strains and three different binary plasmid origins of replication (ORI) on transformation frequency, vector backbone insertion, single copy event frequency (percentage of events which are single copy for all transgenes), quality event frequency (percentage of single copy events with no vector backbone insertions among all events generated; QE) and usable event quality frequency (transformation frequency times QE frequency; UE) in an elite maize cultivar PHR03. Agrobacterium strain AGL0 gave a higher transformation frequency, but a reduced QE frequency than LBA4404 due to a higher number of vector backbone insertions. Higher binary plasmid copy number positively correlated with transformation frequency and usable event recovery. The above findings can be exploited to develop high-throughput transformation protocols, improve the quality of transgenic events in maize and other plants.
  相似文献   

8.
A system for genetic transformation of Coffea canephora by co-cultivation with Agrobacterium rhizogenes harbouring a binary vector has been developed. The objective of the present study was the genetic transformation and direct regeneration of transformants through secondary embryos bypassing an intervening hairy root stage. Transformants were obtained with a transformation efficiency up to 3% depending on the medium adjuvant used. A. rhizogenes strain A4 harbouring plasmid pCAMBIA 1301 with an intron uidA reporter and hygromycin phosphotransferase (hptII) marker gene was used for sonication-assisted transformation of Coffea canephora. The use of hygromycin in the secondary embryo induction medium allowed the selection of transgenic secondary embryos having Ri T-DNA along with the T-DNA from the pCAMBIA 1301 binary vector. In addition transgenic secondary embryos devoid of Ri-T-DNA but with stable integration of the T-DNA from the binary vector were obtained. The putative transformants were positive for the expression of the uidA gene. PCR and Southern blot analysis confirmed the independent, transgenic nature of the analysed plants and indicated single and multiple locus integrations. The study clearly demonstrates that A. rhizogenes can be used for delivering transgenes into tree species like Coffea using binary vectors with Agrobacterium tumefaciens T-DNA borders.  相似文献   

9.
Plant transformation, viaAgrobacterium tumefaciens, is usually performed with binary vectors. Most of the available binary vectors contain within the T-DNA (which is transferred to the plant genome) components not required for the intended modification. These additional sequences may cause potential risks during field testing of the transgenic plants or even more in the case of commercialization. The aim of this study was to produce a plant transformation vector which only contains a selectable and screenable marker gene and a multiple cloning site for insertion of promoter::foreign gene::terminator cassettes from other plasmids.  相似文献   

10.
Agrobacterium-mediated sorghum transformation frequency has been enhanced significantly via medium optimization using immature embryos from sorghum variety TX430 as the target tissue. The new transformation protocol includes the addition of elevated copper sulfate and 6-benzylaminopurine in the resting and selection media. Using Agrobacterium strain LBA4404, the transformation frequency reached over 10% using either of two different selection marker genes, moPAT or PMI, and any of three different vectors in large-scale transformation experiments. With Agrobacterium strain AGL1, the transformation frequencies were as high as 33%. Using quantitative PCR analyses of 1,182 T0 transgenic plants representing 675 independent transgenic events, data was collected for T-DNA copy number, intact or truncated T-DNA integration, and vector backbone integration into the sorghum genome. A comparison of the transformation frequencies and molecular data characterizing T-DNA integration patterns in the transgenic plants derived from LBA4404 versus AGL1 transformation revealed that twice as many transgenic high-quality events were generated when AGL1 was used compared to LBA4404. This is the first report providing molecular data for T-DNA integration patterns in a large number of independent transgenic plants in sorghum.  相似文献   

11.
Following our previously described Agrobacterium tumefaciens-mediated transformation procedure for Artemisia annua L., we have undertaken several additional experiments to establish the importance of some parameters such as explant type, age of explant source, A. tumefaciens strain and type of binary vector. Several binary vectors were useful for the production of transgenic callus on explants of different ages. In transformed calli, a good correlation between integration and expression of foreign DNA was observed: different assays showed expression of β-Glucuronidase, neomycin phosphotransferase II, superoxide dismutase and bleomycin acetyl transferase. The regeneration of transgenic plants required more restricted conditions. Only with the pTJK136 vector could transgenic plants be obtained from leaf and stem explants from 12- to 18-week-old plants. Co-cultivation for 48 h seemed favorable for the regeneration of transgenic plants. Stable integration and expression of the transgenes was also shown in the progeny. Received: 18 August 1997 / Revision received: 3 December 1997 / Accepted: 3 July 1998  相似文献   

12.
Hygromycin B - An Alternative in Flax Transformant Selection   总被引:5,自引:0,他引:5  
The in vitro regeneration of three flax (Linum usitatissimum L.) breeding lines (cv. Jitka, cv. Areco and NLN 245) and selection of transgenic plants were studied. A. tumefaciens derived binary vector GV3101 (pPM90RK)(pPCVRN4) bearing tetramer of 35S promoter enhancer was used in transformation experiments. Following 3 weeks of cultivation on shoot inducing Murashige and Skoog agar medium containing BAP (0.1 μM) and NAA (0.005 μM) from 82.6 % to 98 % of hypocotyl segments formed shoots. While ticarcillin (500 mg dm−3) used to eliminate Agrobacterium following the transformation decreased the organogenic response by about 10 % only, the addition of 20 mg dm−3 hygromycin to ticarcillin efficiently suppressed the regeneration of untransformed control plants. To look up for genomic mutations caused by T-DNA insertion from Agrobacterium transformation or originated from somaclonal variation over 500 regenerated plants have been cloned, transferred into soil and evaluated especially for their morphological characteristics. Up to now among plants of cv. Areco-background at least 8 genotypes showed changes either in flower or filament and stigma colour and one clone of plants with pollen sterility was identified. Among fifty four plant clones evaluated in 7 clones the presence of transgene specific sequence hpt was detected and simultaneously Agrobacterium contamination of tissues was firmly excluded. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
建立了一种利用双T-DNA载体培育无选择标记转基因植物的方法.通过体外重组构建了双T-DNA双元载体pDLBRBbarm.载体中,选择标记nptⅡ基因和另一代表外源基因的bar基因分别位于2个独立的T-DNA.利用农杆菌介导转化烟草(Nicotiana tabacum L.),在获得的转化植株中,同时整合有nptⅡ基因和bar基因的频率为59.2%.对4个同时整合有nptⅡ和bar基因植株自交获得的T1代株系进行检测分析,发现在3个T1代株系2个T-DNA可以发生分离,其中约19.5%的转基因T1代植株中只存在bar基因而不带选择标记nptⅡ.这一结果说明双T-DNA载体系统能有效地用于培育无选择标记的转基因植物.研究还利用位于2个不同载体上的nptⅡ基因与 bar基因通过农杆菌介导共转化烟草,获得共转化植株的频率为20.0%~47.4%,低于使用双T-DNA转化的共转化频率.  相似文献   

14.
15.
An improved protocol for Agrobacterium-mediated transformation of an elite, mature black cherry genotype was developed. To increase transformation efficiency, vacuum infiltration, sonication, and a combination of the two treatments were applied during the cocultivation of leaf explants with Agrobacterium tumefaciens strain EHA105 harboring a PsAGAMOUS RNAi plasmid (pART27-PsAGRNAi). The effects of Agrobacterium culture density and cocultivation duration on transformation efficiency were examined using EHA105 harboring either pBI121-MDL4 or pBI121-PsTFL1. In addition, the effect of the binary vector on transformation efficiency was also studied. Fifteen-minute vacuum infiltration without sonication produced the highest transformation efficiency (21.7%) in experiments using pART27-PsAGRNAi. OD600 values of 1.0 and 1.5 resulted in a transformation efficiency of 5% when pBI121-PsTFL1 was used for transformation. Transformation efficiency of 5% was also obtained from 3-d cocultivation using construct pBI121-MDL4 whereas no shoots regenerated after 4-d cocultivation. The binary vectors used also impacted transformation efficiency. PCR and quantitative-PCR analyses were used to confirm the integration of transgenes and determine the copy number of the selectable marker gene, neomycin phosphotransferase II, in 18 putative transgenic lines. Rooting of transgenic black cherry shoots was achieved at a frequency of 30% using half-strength Murashige and Skoog medium supplemented with 2% sucrose, 5 μM naphthaleneacetic acid, 0.01 μM kinetin, and 0.793 mM phloroglucinol, and the resulting transgenic plants were successfully acclimatized.  相似文献   

16.
High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation process employs low-salt media in combined use with antioxidant l-cysteine alone or l-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12% overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic engineering studies including transformation-based functional genomics.  相似文献   

17.
Different patterns of T-DNA integration in Arabidopsis were obtained that depended on whether a root or a leaf-disc transformation method was used. An examination of 82 individual transgenic Arabidopsis plants, derived from 15 independent Agrobacterium-mediated transformations in which different cointegrate and binary constructs were used, indicated that the transformation method had a significant influence on the type and copy number of T-DNA integration events. Southern hybridizations showed that most of the transgenic plants produced by a leaf-disc method contained multiple T-DNA insertions (89%), the majority of which were organized as right-border inverted repeat structures (58%). In contrast, a root transformation method mostly resulted in single T-DNA insertions (64%), with fewer right-border inverted repeats (38%). The transformation vectors, including cointegrate and binary types, and the plant selectable markers, hygromycin phosphotransferase and dihydrofolate reductase, did not appear to influence the T-DNA integration patterns.  相似文献   

18.
Oryza sativa L. ssp. japonica cv. Zhonghua 8, which is recalcitrant to infection of Agrobacterium tumefaciens (Smith et Townsend) Conn strain EHA105 with ordinary binary vector pCambia 1301, was transformed through Agrobacterium mediated transformation with help of bombardment. The transformation efficiency can be raised greatly. Single copy of gene insertion in the genome of transgenic rice plants was proved by Southern analysis and the expression of GUS gene was observed. GUS gene and hygromycin-resistant gene show 3∶1 segregation in progenies of the transgenic rice plants.  相似文献   

19.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

20.
We report an Agrobacterium-mediated transformation system that can generate marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] from a public line [P898012] using standard binary vectors with bar as a selectable marker. Eight co-cultivation conditions were examined for their effect on transformation. The average transformation frequencies were 0.4 and 0.7% for pZY101-TC2 and pZY101-SKRS, respectively, derived from binary vector pZY102 and containing bar and target gene(s) in separate T-DNA regions. A low selection pressure (2.5 mg l−1 DL-phosphinothrithin, PPT) was deployed during callus induction in combination with rapid selection to generate plants from 80 independent events, all but three of which were fertile and set seed. PCR and Southern analyses showed that 36 out of 80 events contained both bar and the target gene(s) (an average co-transformation frequency of 45%). Seedlings of the T1 generation transmitted T-DNAs with target gene(s) and bar gene independently, generating a fraction of progeny with only the target gene(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号