首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thromboxane and leukotrienes have been implicated in inflammation. However, the production level of these eicosanoids in patients with rheumatoid arthritis is still unclarified. In the present study, endogenous synthesis of thromboxane and cysteinyl leukotrienes in patients was investigated.The production of eicosanoids in patients is assessed by measuring stable urinary metabolites,11-dehydro thromboxane B2 and leukotriene E4, using gas chromatography/selected ion monitoring and liquid chromatography/tandem mass spectrometry. The level of urinary thromboxane in patients was significantly higher than that in healthy volunteers (P < 0.05). Furthermore, we investigated the effects of administered drugs on the production of these eicosanoids. The urinary thromboxane level of the untreated group (1630 +/- 613 pg/mg creatinine) was much higher than that of healthy volunteers (342 +/- 263 pg/mg creatinine).The level in the group receiving NSAID alone was similar to that in healthy volunteers, and the group receiving steroid alone showed slightly lower thromboxane levels than the untreated group. On the other hand, the leukotriene E4 level in patients (280 +/- 360 pg/mg creatinine) was also significantly higher than that in healthy volunteers (59 +/- 54 pg/mg creatinine, P < 0.05). In particular, the group receiving methotrexate (904 +/- 685 pg/mg creatinine) had higher leukotriene levels than not only healthy volunteers but also other medicated groups.These findings demonstrated that endogenous thromboxane and leukotriene production in patients with rheumatoid arthritis are enhanced, and the effects of medication on the production of these eicosanoids differed in thromboxane and leukotriene E4.  相似文献   

2.
OBJECTIVE: Diabetes mellitus is associated with inflammatory state and increased cardiovascular mortality. Leukotrienes are arachidonic acid metabolites derived from the 5-lipoxygenase pathway that possess vasoactive, chemotactic and proinflammatory properties. The aim of this study was to evaluate (1) the urinary excretion of leukotriene E4 (LTE4) in type 1 diabetic subjects and healthy volunteers and (2) the influence of glycemic control attested by HbA(1C) on LTE4 excretion. METHODS AND RESULTS: Urinary excretion of LTE(4), measured by liquid chromatography-tandem mass spectrometry, was significantly (P=0.033) increased in diabetic patients (median [10th-90th percentiles]: 42.1 pg/mg creatinine [16.7-71.4], n=34), compared to healthy subjects (25.5 pg/mg creatinine [13.9-54.1], n=28). Subgroup analysis indicated a trend towards increased LTE4 excretion in patients with poor glycemic control [(HbA(1C)> or =9% or plasma glucose >18 mmol/L): 43.3 pg/mg creatinine [21.6-70.5], n=14], whereas no difference was observed between patients with good metabolic control [(HbA(1C)< or =7.5%): 36.4 pg/mg creatinine [15.8-83.4], n=20] and healthy subjects. CONCLUSIONS: This study suggested that increased LTE4 excretion in type 1 diabetic state might reflect systemic activation of the 5-lipoxygenase pathway. It could be a determinant of underlying inflammatory state and vascular disease.  相似文献   

3.
Chronic smoking is a major risk factor of atherosclerosis and coronary heart disease. The measurement of three major thromboxane A2 metabolites, 11-dehydrothromboxane B2, 2,3-dinorthromboxane B2 and thromboxane B2, in the urines of 13 apparently healthy smokers (average 39 years, range 27-56 years) showed significantly elevated excretion rates for all thromboxane A2 metabolites as compared to 10 apparently healthy age-matched non-smokers (average 37 years, range 26-56 years). Importantly, characteristic alterations in the thromboxane A2 metabolite pattern were found in the urines of smokers. The contribution of 2,3-dinorthromboxane B2 to total measured excretion of thromboxane A2 metabolites was 59.2% in smokers (404.0 +/- 53.0 pg/mg creatinine) versus 19.4% in non-smokers (85.2 +/- 8.3 pg/mg creatinine), that of 11-dehydrothromboxane B2 35.7% in smokers (673.2 +/- 88.9 pg/mg creatinine) as compared to 75.5% in non-smokers (332.6 +/- 30.9 pg/mg creatinine). The contribution of thromboxane B2 (57.5 +/- 7.7 pg/mg creatinine in smokers versus 21.9 +/- 1.5 pg/mg creatinine in non-smokers) was similar at 5.1%. The excretion of cotinine, the major urinary metabolite of nicotine that correlates well with the reported daily cigarette consumption (r = 0.97, P less than 0.0001), showed a good correlation to thromboxane A2 metabolite excretion (2,3-dinorthromboxane B2: r = 0.92, P less than 0.0001; 11-dehydrothromboxane B2; r = 0.87, P less than 0.0001).  相似文献   

4.
Metabolism and excretion of peptide leukotrienes in the anesthetized rat   总被引:2,自引:0,他引:2  
The metabolism and excretion of the peptide leukotrienes C4, D4, E4 and N-acetylleukotriene E4 have been studied in the anesthetized rat. The intravenous administration of [3H]leukotriene C4 (2.6 X 10(-11) mol/kg) showed a rapid clearance of radioactivity from the blood and a time-related biliary excretion, recovering 69 +/- 1.6% (n = 6) over 60 min. Less than 1% of total radioactivity was recovered in the urine over the same time period. Similarly, the intravenous administration of [3H]leukotriene D4 (2.5 X 10(-11) mol/kg), [3H]leukotriene E4 (2.5 X 10(-11) mol/kg) and N-acetyl[3H]leukotriene E4 (2.1 X 10(-11) mol/kg) showed a 62 +/- 7.5% (n = 4), 52 +/- 1.5% (n = 4) and 37 +/- 4.6% (n = 5) biliary recovery of radioactivity, respectively, after 60 min. Examination of bile identified leukotriene D4 and N-acetylleukotriene E4 as the main products, although substantial radioactivity, which probably represents unidentified polar products, was present at the solvent fronts of the reverse-phase HPLC. Time course studies indicated a relatively rapid conversion of leukotriene C4 to leukotriene D4, while leukotriene D4 metabolism appeared to be much slower. Leukotriene E4 was a minor product, suggesting that the N-acetylation process is rapid. Incubation of [3H]leukotriene C4 in rat plasma and whole blood in vitro resulted in a slow conversion of leukotriene C4 to leukotriene D4 and leukotriene E4 only. These data suggest that the majority of the leukotriene metabolism and excretion in vivo in the anesthetized rat occurs predominantly in the hepatic system. We conclude that this model is suitable for the measurement of in vivo production of peptide leukotrienes.  相似文献   

5.
Thromboxane (TX) B2, 2,3-dinor-TXB2, 11-dehydro-TXB2, 6-oxoprostaglandin (PG)F1 alpha and 2,3-dinor-6-oxo-PGF1 alpha were measured in 24 h urine samples obtained from 30 apparently healthy chronic cigarette smokers and 37 closely matched non-smoking control subjects. Samples were analysed using a newly developed assay based on immunoaffinity chromatography and capillary column gas chromatography/electron capture negative ion chemical ionisation mass spectrometry. There were significant and comparable increases in the excretion rates of both 2,3-dinor-TXB2 and 11-dehydro-TXB2 in the smoking compared with the non-smoking group (2P less than 0.001). Excretion rates of 2,3-dinor-TXB2 were 418 +/- 35 and 265 +/- 26 pg/mg creatinine in the two groups, respectively. 11-Dehydro-TXB2 excretion rates were 440 +/- 54 and 221 +/- 18 pg/mg creatinine, respectively (mean +/- S.E.). There were significant (2P less than 0.05) positive correlations between average reported cigarette consumption and excretion of both thromboxane metabolites. There were small but significant (2P less than 0.02) increases in the excretion rates of both 6-oxo-PGF1 alpha and 2,3-dinor-6-oxo-PGF1 alpha in the smoking compared with the non-smoking group. There was no significant difference in the rates of excretion of TXB2 in the two groups. The effects of acute cigarette smoke exposure (five cigarettes in 2 h) was also studied in four normally non-smoking healthy volunteers. There was no significant change in the excretion rate of any of the eicosanoids measured during control and smoking periods (at least 2 weeks apart), indicating that increased TXA2 biosynthesis in chronic smokers is unlikely to be a consequence of acute platelet activation.  相似文献   

6.
Bronchoconstrictor cysteinyl leukotrienes (LT) and thromboxane (TX) A2 have been implicated in the pathogenesis of asthma. Determination of urinary leukotriene E4 (LTE4) and 11-dehydro-TXB2 levels are often used to assess cysteinyl LT and TXA2 production in humans. To define the potential role in the pathogenesis of asthma, we investigated the urinary LTE4 and 11-dehydro-TXB2 levels. LTE4 and 11-dehydro-TXB2 levels were determined using liquid chromatography/tandem mass spectrometry (LC/MS) and gas chromatography/mass spectrometry (GC/MS), respectively. Urinary LTE4 levels in asthmatic patients (192 +/- 122 pg/mg creatinine, n = 14) were significantly higher (P < 0.005) than those in healthy volunteers (55 +/- 16 pg/mg creatinine, n = 13), but no significant difference in 11-dehydro-TXB2 levels was observed. A significant inverse correlation (r = -0.821, P < 0.005) was found between urinary LTE4 levels and the forced expiratory volume in 1 s (FEV1) but no significant correlation was observed between urinary 11-dehydro-TXB2 levels and FEV1. The present findings suggest that cysteinyl LTs play a more important role in the pathogenesis of asthma than TXA2.  相似文献   

7.
Urinary epidermal growth factor (EGF) excretion was calculated as ng EGF per mg creatinine and ng EGF per 24 hr. It was increased 4-9 fold in rats with genetic (BB) or streptozotocin-induced diabetes. It decreased to 2-3 fold control values in insulin-treated animals. In contrast, EGF concentration in serum was lower in diabetic than in control rats (360 +/- 72 vs 524 +/- 150 pg/ml, P .086); EGF level in plasma was unchanged (319 +/- 67 vs 313 +/- 96 pg/ml). In diabetic rats EGF content was increased in submaxillary glands (1018 +/- 259 vs 738 +/- 122 pg/mg protein, P .060) but unchanged in the kidneys (70 +/- 18 vs 65 +/- 6 pg/mg protein in controls). EGF binding to the liver microsomes in diabetic rats was decreased by 30-40% and was not restored by insulin therapy. Binding to the kidneys also showed a tendency to decrease in diabetic animals. The EGF excretion and receptor binding were normal in obese normoglycemic Zucker fa/fa rats. We suggest that hyperglycemia and/or glucosuria may affect EGF synthesis and/or excretion in the kidneys and EGF synthesis or accumulation in the megakaryocytes. The mechanism of decreased EGF receptor binding remains to be clarified.  相似文献   

8.
The role of increased prostaglandin production and the effects of exogenous prostaglandins on inflammation of colitis are not established. We administered intramuscular 16,16-dimethyl prostaglandin E2 (DiM-PGE2) and indomethacin to rabbits with formalin immune-complex colitis and measured leukotriene B4 (LTB4), prostaglandin E2 (PGE2) and severity of inflammation. DiM-PGE2 (100 micrograms/kg/BID) reduced LTB4 production (from 401 +/- 108 to 216 +/- 58 pg/ml) and infiltration of neutrophils, mucosal necrosis, inflammatory exudate and edema (all P less than 0.05). Other studies determined that parenteral DiM-PGE2 did not reduce the initial chemical damage induced by formalin, suggesting that cytoprotection of chemical insult was not the mechanism of suppressed inflammation in the immune colitis model. Indomethacin (10 mg/kg/d) reduced endogenous PGE2 by 80%, but did not reduce leukotriene production or inflammation. Exogenous prostaglandins cause a dose-dependent suppression of inflammation in experimental colitis, by a mechanism other than cytoprotection of chemical-induced mucosal injury.  相似文献   

9.
Activation of arachidonic acid occurs after spinal cord injury. Leukotriene B4 is a lipoxygenase metabolite of arachidonic acid. In a rat model of experimental spinal cord injury, we found that the leukotriene B4 content was less than the sensitivity of our assay (8 pg/mg of protein) in non-traumatized spinal cord. Leukotriene B4 was detectable in traumatized cord (mean +/- SE, 25 +/- 5 pg/mg of protein; n = 3). Release of leukotriene B4 from spinal cord slices into the incubation medium was also noted after trauma (9 +/- 1 pg/mg of protein; n = 12) and was enhanced by exposure of traumatized spinal cord slices to the calcium ionophore A23187 (375 +/- 43 pg/mg of protein; n = 12). The amount of leukotriene B4 released corresponded to the extent of post-traumatic polymorphonuclear cell infiltration determined by a myeloperoxidase assay. Results from this study suggest that the source of leukotriene B4 in spinal cord injury is infiltrating polymorphonuclear cells.  相似文献   

10.
D L Hwang  A Lev-Ran 《Life sciences》1990,47(8):679-685
Levels of epidermal growth factor (EGF) in serum were significantly decreased in streptozotocin (STZ)-diabetic mice (446 +/- 168 pg/ml after 1 week and 423 +/- 52 after 4 weeks vs 766 +/- 162 pg/ml in controls, P.002 and less than .001. respectively) and in genetically diabetic ob/ob mice (455 +/- 285 vs 962 +/- 453 pg/ml in nondiabetic ob/+ controls, P.043). The urinary excretion of EGF was significantly increased in STZ mice (104 +/- 53 vs 51 +/- 23 ng/h, P.013) but unchanged in ob/ob mice (33 +/- 9 vs 45 +/- 16 ng/h, P.134). However, when expressed per mg creatinine it was decreased in both cases: in STZ mice to 680 +/- 250 ng/mg at 1 week and 684 +/- 211 at 4 weeks vs 1250 +/- 303 ng/mg in controls (P less than .01); and in the ob/ob mice to 552 +/- 117 vs 1237 +/- 300 ng/mg in ob/+ controls (P less than .01). EGF content of the submandibular glands of STZ mice remained unchanged at 1 week (13.1 +/- 2.9 vs 11.0 +/- 1.8 micrograms/mg protein, P.170) but dropped by 4 weeks (4.7 +/- 1.2 micrograms/mg, P less than .001); in the ob/ob mice it was less than 20% that of controls (2.1 +/- 0.8 vs 12.2 +/- 3.6 micrograms/mg protein). In kidneys, the EGF content was not altered in either ob/ob (524 +/- 50 vs 571 +/- 33 pg/mg protein) or STZ mice (652 +/- 183 vs 665 +/- 80 pg/mg). The preproEGF mRNA level in STZ-treated mice was reduced after 4 weeks in submandibular glands but not in kidneys. The results show that diabetes affects EGF production, utilization and/or excretion in mice and that kidneys are spared from suppression of EGF synthesis that is pronounced in the submandibular glands.  相似文献   

11.
The purpose of this study was to assess the participation of the atrial natriuretic peptide (ANP)-cGMP system in electrolyte and volume handling of cholestatic rats submitted to an acute oral sodium load. Cholestasis was induced by ligation and section of the common bile duct (n = 51). Control rats were sham operated (n = 56). Three weeks after surgery, 24-hr urinary volume, sodium, potassium, cGMP and creatinine excretion were measured. Three days later, animals received 10 mmol/kg NaCl (1 M) by gavage, and urinary excretion was measured for 6 hr. In parallel groups of rats, plasma volume, electrolytes and ANP concentration, extracellular fluid volume (ECFV), and renal medullary ANP-induced cGMP production were determined in basal conditions or 1 hr after oral sodium overload. As compared with controls, cholestatic rats had a larger ECFV and higher plasma ANP (67.2 +/- 5.2 vs 39.7 +/- 3.5 pg/ml), but lower hematocrit and blood volume, and were hyponatremic. Cholestatic rats showed higher basal excretion of sodium, potassium, and volume than controls, but equal urinary cGMP. After the NaCl overload, cholestatic rats showed a reduced sodium excretion but equal urinary cGMP. One hr after sodium overload, both groups showed hypernatremia, but whereas in control rats ECFV and ANP increased (50.7 +/- 4.1 pg/ml), in cholestatic rats ECFV was unchanged, and plasma volume and ANP were reduced (37.5 +/- 5.8 pg/ml). ANP-induced cGMP production in renal medulla was similar in cholestatic and control nonloaded rats (14.2 +/- 5.2 vs 13.4 +/- 2.6 fmol/min/mg). One hr after the load, medullary cGMP production rose significantly in both groups, without difference between them (20.6 +/- 3.1 vs 22.7 +/- 1. 7 fmol/min/mg). We conclude that the blunted excretion of an acute oral sodium load in cholestatic rats is associated with lower plasma ANP due to differences in body fluid distribution and cannot be explained by renal refractoriness to ANP.  相似文献   

12.
8-Isoprostaglandin F2alpha is one of a series of isoprostanes formed by free radical catalysed peroxidation of arachidonic acid. Urinary 8-isoprostaglandin F2alpha is a new marker which reflects oxidative stress in vivo and can be utilized as a diagnostic tool to assess the extent of oxidative stress in various disease states associated with lipid peroxidation. Increased levels of 8-isoprostaglandin F2alpha in cardiac ischemia/reperfusion provide evidence for oxidative stress during coronary perfusion. In animal studies, the restoration of blood flow after lower limb ischemia is followed by reperfusion syndrome. In this study we investigated whether lower limb ischemia/reperfusion is associated with oxidative stress, as reflected by urinary levels of 8-isoprostaglandin F2alpha. Ten patients (mean age 72 years, range 61-82 years) suffering from chronic lower limb ischemia and 10 healthy volunteers (mean age 69 years, range 60-79 years) participated in the study. In all patients, diagnostic angiography had revealed stenosis or occlusion either in the aortoiliac or femoropopliteal region. Surgical revascularization consisted of femoropopliteal reconstruction, femorofemoral reconstruction, aortobifemorial reconstruction, or femoral endartectomy. Urine samples from patients were collected a day before surgery and in the second postoperative day. Urinary 8-isoprostaglandin F2alpha was extracted on a C2 silica cartridge and determinated by radioimmunoassay. After revascularization, 8-isoprostaglandin F2alpha excretion (pg/micromol creatinine, mean +/- SD) was decreased by 2.5-fold (preoperative 48.9 +/- 8.9, postoperative 19.1 +/- 9.5, P < 0.001). The postoperative values were similar to the concentrations measured in healthy volunteers (18.0 +/- 11.0). All revascularizations were successful, and the increase in ankle-brachial index (preoperative 0-0.6, postoperative 0.4-0.8) revealed improved blood flow in the ischemic lower limb. We suggest that, as assessed by the quantitation of urinary 8-isoprostaglandin F2alpha, chronic lower limb ischemia is associated with increased oxidative stress, which is decreased by revascularization.  相似文献   

13.
Healthy volunteers underwent bronchial challenge with increasing doses of nebulized leukotriene D4 (0.007 - 200 nmol) at 15 min intervals. Total amounts of 200 nmol (females) and 400 nmol (males) were inhaled, corresponding to approximately 100 nmol and 200 nmol deposited in the lung, respectively. Of the latter amounts 3 +/- 1% (mean +/- S.E.M., n = 5) was found to be excreted as leukotriene E4 into the urine within 12 h. No further excretion after this period was observed. Approximately 50% of the total urinary leukotriene E4 was excreted during the first 2 h. These results suggest that a possible formation of sulfidopeptide leukotrienes in the lung in vivo can be monitored by measuring leukotriene E4 excretion into the urine.  相似文献   

14.
To study the role of leukotriene C4(LTC4) and the effect of hydrocortisone and aminophylline on plasma LTC4 levels in patients with asthmatic attacks, we measured LTC4 in plasma of 18 asthmatics during a wheezing attack and of 7 normal subjects. Blood samples were obtained before and after treatment with aminophylline and/or hydrocortisone injections. We extracted LTC4 using a Sep-Pak C18 cartridge for the measurement of LTC4 by radioimmunoassay. The plasma levels of immunoreactive LTC4 (i-LTC4) of the normal subjects were 142 +/- 25 pg/ml (n = 7), while those of nonatopic type asthmatic patients with wheezing attacks were 208 +/- 68 pg/ml (n = 15) (p less than 0.01). Before and after treatment with both hydrocortisone succinate (100 mg) and aminophylline (250 mg), 6 asthmatic patients with wheezing attacks had a mean plasma level of i-LTC4 181 +/- 24 and 132 +/- 18 pg/ml (p less than 0.01), respectively. On the other hand, the treatment with aminophylline 250 mg alone increased the i-LTC4 levels from 178 +/- 19 pg/mg to 213 +/- 16 pg/mg (n = 6)(p less than 0.05), while treatment with hydrocortisone succinate 100 mg decreased the i-LTC4 level 0.05 from 284 +/- 99 pg/ml to 249 +/- 85 pg/ml (n = 4)(p less than 0.05). In conclusion, the present study shows that the i-LTC4 level in venous blood of patients with asthmatic attacks is decreased significantly by treatment with hydrocortisone succinate.  相似文献   

15.
Tamm-Horsfall protein (THP), a normal constituent of mammalian urine, has been determined in rat urine under various conditions in an attempt to elucidate the physiological role of this glycoprotein. Experiments were designed to assess whether THP production is related to the process of urine concentration or to the transport activity of the thick ascending limb of the loop of Henle (TAL), the nephron segment where it is produced. For this purpose, THP excretion was measured, by radioimmunoassay, in adult male rats under 4 different conditions induced by the following chronic treatments: (1) furosemide (12 mg/day in osmotic minipumps); (2) increased water intake; (3) antidiuretic hormone (ADH) infusion (50 ng DDAVP/day in osmotic minipumps) in rats of the Brattleboro strain with hereditary hypothalamic diabetes insipidus; (4) high-protein (32% casein) versus low-protein diet (10% casein). Each experiment included 6 experimental and 6 control rats. After treatment for 1-3 weeks, 24-h urines were collected for determination of urine flow rate, osmolality, and creatinine and THP concentrations. No significant changes in THP excretion were observed in experiments (1) and (2) despite 5- to 7-fold-differences in urine flow rate. Antidiuretic hormone treatment in (3) slightly lowered THP excretion (287 +/- 53 vs. 367 +/- 41 micrograms/day per 100 g body weight; p less than 0.005), whereas high-protein diet, in experiment (4), led to a 50% increase in THP excretion (446 +/- 57 vs. 304 +/- 79 micrograms/day per 100 g body weight; p less than 0.001). Expressing THP excretion relative to that of creatine did not change these findings. These results show (1) that chronically established changes in the level of diuresis, chronic furosemide-induced blockade of the Na,K,Cl-cotransporter or the absence of ADH in Brattleboro rats have little or no impact on the level of THP production, and (2) that THP production is independent of the intensity of transport in the TAL, since two conditions which both are known to increase the transport rate of solutes in the TAL (ADH infusion and high-protein diet), resulted in opposite changes in THP excretion. It is concluded that the rate of THP synthesis is neither linked to the process of urine concentration nor to the ion transport activity of the TAL.  相似文献   

16.
The effect of micropuncture of the renal papilla through an intact ureter on urinary concentrating ability of rats was examined. Micropuncture of the renal papilla caused a fall in urine osmolality in the punctured kidney from 1718 +/- 106 to 1035 +/- 79 mosmol/kg X H2O. In order to investigate the role of renal prostaglandins in this process, PGE2 excretion was measured and found to increase from 63.4 +/- 14.0 to 205.5 +/- 57.1 pg/min. Urine osmolality and PGE2 excretion from the contralateral kidney were not significantly altered. In animals given meclofenamate (2 mg/kg X hr), renal PGE2 excretion was reduced to 22.3 +/- 5.1 pg/min prior to micropuncture and it remained low at 8.9 +/- 1.8 pg/min after papillary micropuncture. Meclofenamate also blocked the fall in urine osmolality caused by micropuncture of the renal papilla, with urine osmolality averaging 1940 +/- 122 before and 1782 +/- 96 mosmol/kg X H2O after the micropuncture. These results indicated that papillary micropuncture through an intact ureter increased renal PGE2 excretion and that a rise in renal production of PGE2 or some other prostanoid is associated with a fall in urine concentrating ability.  相似文献   

17.
It has been suggested that cyclosporin A (CsA) nephrotoxicity can be reduced by the concomitant administration of omega-3 fatty acids or vitamin E. The present study was designed to establish whether the effect of the above substances can also be demonstrated in rats with hereditary hypertriglyceridemia (HTG) whose sensitivity to the nephrotoxic effect is greater than in control AVN rats. CsA administration at a dose of 10 mg/kg/day to HTG rats resulted in a significant rise (p<0.001) in serum levels of creatinine (from 66.0+/-7.6 to 108.4+/-11.6 micromol/l) and urea (from 8.3+/-0.7 to 22.3+/-18 mmol/l) which was not found in AVN rats. The baseline values of systolic blood pressure (SBP) were significantly higher in HTG rats. However, in both strains CsA administration was associated with a similar SBP increase which was not prevented by omega-3 fatty acids (EPAX) or vitamin E administration. Concomitant administration of CsA with EPAX at a dose of 600 mg/kg b.w./day in HTG rats prevented the rise in the serum levels of creatinine (65.4+/-14.7 micromol/l) and reduced the increase in the serum urea levels (11.9+/-7.6 mmol/l). Concomitant administration of CsA and vitamin E (at a dose of 25 mg/kg/day) also reduced the increase (p<0.05) in the serum levels of creatinine (70.7+/-14.3 micromol/l) and urea (9.8+/-3.4 mmol/l) compared to the effects elicited by the administration of CsA alone (p<0.05). Administration of CsA alone or in combination with EPAX or vitamin E did not have a marked effect on diuresis, proteinuria, urinary osmolality, urinary excretion of urea, creatinine and potassium. Under all experimental conditions, the rate of urinary excretion of sodium in HTG rats was significantly lower (p<0.01) than in AVN rats. The results obtained support the assumption that omega-3 fatty acids and vitamin E at the doses used reduce CsA nephrotoxicity in rats with hereditary hypertriglyceridemia whose sensitivity to the nephrotoxic effect of CsA is significantly higher than in AVN rats.  相似文献   

18.
Prostaglandin D2 (PGD2) has been found to be an important pathophysiological mediator in a number of human disorders. Thus a means to assess the endogenous production of PGD2 is of considerable clinical value. To accomplish this goal, we developed a method for the quantification of the major urinary metabolite of PGD2, 9 alpha, 11 beta-dihydroxy-15-oxo-2,3,18,19-tetranorprost-5-ene-1,20-dioic acid, by gas chromatography/negative ion chemical ionization mass spectrometry. This metabolite was chemically synthesized and converted to an 18O4-labeled derivative for use as an internal standard. Novel derivatization and purification procedures were incorporated in the assay taking advantage of the ability of the lower side chain of this molecule to undergo cyclization at acidic pH to form a hemiketal, gamma-lactone, and uncyclization with methoximation. Precision of the assay is +/- 7% and accuracy is 96%. The lower limit of sensitivity is approximately 50 pg. Normal levels for the urinary excretion of this metabolite in 18 normal adults was found to be 1.08 +/- 0.72 ng/mg creatinine (mean +/- 2SD). Substantial elevations in the urinary excretion of the metabolite were found in clinical situations in which prostaglandin D2 has been shown to be released in increased quantities. Thus, this assay provides a sensitive and accurate method to assess endogenous production of prostaglandin D2 as a means to explore the pathophysiological role of prostaglandin D2 in human disease.  相似文献   

19.
A method for the determination of prostaglandin G/H synthase and lipoxygenase activities in tissues was developed and employed with rat gastric mucosa samples. Tissues and microsomes were incubated in a buffer containing nonionic detergent and 1.32 mM arachidonic acid for 10 min. Following extraction with ethyl acetate, the oxidation products of arachidonic acid were derivatized with panacyl bromide. A reversed-phase column and a quaternary mobile phase were used to separate and quantitate the panacyl bromide esters of prostaglandin E2 and leukotriene C4/D4. Prostaglandin G/H synthase and lipoxygenase activities were determined in gastric mucosa and were 371 +/- 66 and 173 +/- pg/mg/min, respectively.  相似文献   

20.
The present study was designed to determine urinary excretion of kallikrein(KAL)-kinin as well as prostaglandin (PG) E2, TXB2 and 2,3-dinor-TXB2, a major urinary metabolite of TXA2 synthesized in platelets, by specific RIAs in patients with diabetes mellitus (DM). KAL or kinin excretion in 26 type II DM did not differ from control values obtained in 18 age-matched healthy subjects (C), although DM with HbA1 greater than 11% excreted less KAL. Urinary PGE2 excretion (7.6 +/- 2.8 ng/mg creatinine, mean +/- SE) was significantly lower in DM compared to C (17.5 +/- 3.9, p less than 0.05), while DM excreted more TXB2 (0.57 +/- 0.09, p less than 0.01) and 2,3-dinor-TXB2 (0.56 +/- 0.12, N.S.) than C (0.19 +/- 0.02 or 0.33 +/- 0.01). DM with or without mild proteinuria demonstrated lower PGE2, but higher TXB2 and 2,3-dinor-TXB2 excretion. A positive correlation of TXB2/2,3-dinor-TXB2 with proteinuria was observed in this group. However, in DM with massive proteinuria over 500 micrograms/mg creatinine, TXB2 and 2,3-dinor-TXB2 excretion decreased to levels almost identical to C. As a whole, a ratio of TXB2 to PGE2 or 2,3-dinor-TXB2 in DM was significantly higher than in C. The results suggest that a relative preponderance of TXB2 to 2,3-dinor-TXB2 may indicate an augmented renal, in addition to platelet, TXA2 synthesis. An excessive vasoconstrictive and proaggregatory TXA2 renal synthesis, concomitant with a decrease in vasodilatory and antiaggregatory PGE2, may have profound effects on renal functions such as protein excretion in DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号