首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The stereochemistry of the hydrogen transfer to NADP catalyzed by D-galactose dehydrogenase (EC 1.1.1.48) from P. fluorescens was investigated. The label at C-1 of D-[1-3H] galactose was enzymatically transferred to NADP and the resulting [4-3H]NADPH was isolated and its stereo-chemistry at C-4 investigated. It was found that the label was exclusively located at the 4(S) position in NADPH which calls for classification as a B-enzyme. The correlation of this finding with tentative classification rules of NAD(P)-linked dehydrogenases in regard to their stereo-chemistry of hydrogen transfer to the coenzyme is discussed.  相似文献   

3.
4.
Alanine racemase of Bacillus stearothermophilus catalyzes transamination as a side reaction. Stereospecificity for the hydrogen abstraction from C-4′ of pyridoxamine 5′-phosphate occurring in the latter half transamination was examined. Both apo-wild-type and apo-fragmentary alanine racemases abstracted approximately 20 and 80% of tritium from the stereospecifically-labeled (4′S)- and (4′R)-[4′-3H]PMP, respectively, in the presence of pyruvate. Alanine racemase catalyzes the abstraction of both 4′S- and 4′R-hydrogen like amino acid racemase with broad substrate specificity. However, R-isomer preference is a characteristic property of alanine racemase.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Regulation of alanine dehydrogenase in Bacillus (licheniformis)   总被引:1,自引:2,他引:1       下载免费PDF全文
Cell extracts of Bacillus licheniformis were found to contain nicotinamide adenine dinucleotide (NAD)-dependent l-alanine dehydrogenase (ADH) (l-alanine: NAD oxidoreductase, EC 1.4.1.1). High specific activities (3.5 to 6.0 IU/mg of protein) were found in extracts of cells throughout growth cycles only when l-alanine served as the primary source of carbon or carbon and nitrogen. Specific activities were minimal (0.02 to 0.04 IU/mg of protein) during growth on glucose, but increased at least sevenfold during the first 5 h of postlogarithmic-phase metabolism. Addition of 10 mM glucose to cultures during logarithmic-phase growth on l-alanine resulted in a rapid decrease in enzyme activity. Addition of 20 mM l-alanine to cells near the completion of log-phase growth on glucose resulted in a 20-fold increase in ADH specific activity during less than one cell generation. Extracts of postlogarithmic-phase cells cultured on glucose, malate, l-glutamate, or Casamino Acids contained intermediate levels of ADH activity. The enzyme was partially purified from crude extracts of B. licheniformis, and apparent kinetic constants were estimated. A role for ADH in the catabolism of l-alanine to pyruvate during vegetative growth on l-alanine and during sporulation of cells cultured on glucose is proposed on the basis of these experimental results.  相似文献   

12.
The stereochemistry of the hydrogen transfer to NAD catalyzed by ribitol dehydrogenase (ribitol:NAD 2-oxidoreductase, EC 1.1.1.56) from Klebsiella pneumoniae and D-mannitol-1-phosphate dehydrogenase (D-mannitol-1-phosphate:NAD 2-oxidoreductase, EC 1.1.1.17) from Escherichia coli was investigated. [4-3H]NAD was enzymatically reduced with nonlabelled ribitol in the presence of ribitol dehydrogenase and with nonlabelled D-mannitol 1-phosphate and D-mannitol 1-phosphate dehydrogenase, respectively. In both cases the [4-3H]-NADH produced was isolated and the chirality at the C-4 position determined. It was found that after the transfer of hydride, the label was in both reactions exclusively confined to the (4R) position of the newly formed [4-3H]NADH. In order to explain these results, the hydrogen transferred from the nonlabelled substrates to [4-3H]NAD must have entered the (4S) position of the nicotinamide ring. These data indicate for both investigated inducible dehydrogenases a classification as B or (S) type enzymes. Ribitol also can be dehydrogenated by the constitutive A-type L-iditol dehydrogenase (L-iditol:NAD 5-oxidoreductase, EC 1.1.1.14) from sheep liver. When L-iditol dehydrogenase utilizes ribitol as hydrogen donor, the same A-type classification for this oxidoreductase, as expected, holds true. For the first time, opposite chirality of hydrogen transfer to NAD in one organic reaction--ribitol + NAD = D-ribu + NADH + H--is observed when two different dehydrogenases, the inducible ribitol dehydrogenase from K. pneumoniae and the constitutive L-iditol dehydrogenase from sheep liver, are used as enzymes. This result contradicts the previous generalization that the chirality of hydrogen transfer to the coenzyme for the same reaction is independent of the source of the catalyzing enzyme.  相似文献   

13.
A study was made of the NAD+-dependent alanine dehydrogenase (EC 1.4.1.1) elaborated by the methylotrophic bacterium Pseudomonas sp. strain MA when growing on succinate and NH4Cl. This enzyme was purified 400-fold and was found to be highly specific for NH3 and NAD+; however, hydroxypyruvate and bromopyruvate, but not alpha-oxoglutarate or glyoxylate, could replace pyruvate to a limited extent. The Mr of the native enzyme was shown to be 217,000, and electrophoresis in SDS/polyacrylamide gels revealed a minimum Mr of 53,000, suggesting a four-subunit structure. The enzyme, which has a pH optimum of 9.0, operated almost exclusively in the aminating direction in vitro. It was induced by NH3 or by alanine, and was repressed by growth on methylamine or glutamate. It is suggested that this enzyme has two roles in this organism, namely in NH3 assimilation and in alanine catabolism.  相似文献   

14.
15.
16.
17.
18.
Bacillus subtilis strain 168 possesses an NAD-dependent glutamate dehydrogenase. The level of this enzyme is influenced by the stage of growth, the source of nitrogen, and a high rate of tryptophan biosynthesis. The enzyme appears to serve an anabolic function and, therefore, must be considered as a possible route for the incorporation of inorganic nitrogen into an organic form.  相似文献   

19.
1. The bacterial distribution of alanine dehydrogenase (L-alanine:NAD+ oxidoreductase, deaminating, EC 1.4.1.1) was investigated, and high activity was found in Bacillus species. The enzyme has been purified to homogeneity and crystallized from B. sphaericus (IFO 3525), in which the highest activity occurs. 2. The enzyme has a molecular weight of about 230 000, and is composed of six identical subunits (Mr 38 000). 3. The enzyme acts almost specifically on L-alanine, but shows low amino-acceptor specificity; pyruvate and 2-oxobutyrate are the most preferable substrates, and 2-oxovalerate is also animated. The enzyme requires NAD+ as a cofactor, which cannot be replaced by NADP+. 4. The enzyme is stable over a wide pH range (pH 6.0--10.0), and shows maximum reactivity at approximately pH 10.5 and 9.0 for the deamination and amination reactions, respectively. 5. Alanine dehydrogenase is inhibited significantly by HgCl2, p-chloromercuribenzoate and other metals, but none of purine and pyrimidine bases, nucleosides, nucleotides, flavine compounds and pyridoxal 5'-phosphate influence the activity. 6. The reductive amination proceeds through a sequential ordered ternary-binary mechanism. NADH binds first to the enzyme followed by ammonia and pyruvate, and the products are released in the order of L-ALANINE AND NAD+. The Michaelis constants are as follows: NADH (10 microM), ammonia (28.2 mM), pyruvate (1.7 mM), L-alanine (18.9 mM) and NAD+ (0.23 mM). 7. The pro-R hydrogen at C-4 of the reduced nicotinamide ring of NADH is exclusively transferred to pyruvate; the enzyme is A-stereospecific.  相似文献   

20.
NAD+-synthetase is a ubiquitous enzyme catalyzing the last step in the biosynthesis of NAD+. Mutants of NAD+ synthetase with impaired cellular functions have been isolated, indicating a key role for this enzyme in cellular metabolism. Crystals of the enzyme from Bacillus subtilis suitable for x-ray crystallographic investigation have been grown from polyethylene glycol solutions. Investigation on the structural organization of NAD+ synthetase, an enzyme fundamental for NAD+ biosynthesis, and belonging to the recently characterized amidotransferase enzymatic family, will provide more insight into the catalytic mechanism of deamido-NAD+ → NAD+ conversion, a biosynthetic process that is a potential target for the development of antibiotic compounds against Bacillus sp. and related bacteria. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号