共查询到20条相似文献,搜索用时 15 毫秒
1.
Recurrent nonsense mutations within the type VII collagen gene in patients with severe recessive dystrophic epidermolysis bullosa. 总被引:2,自引:4,他引:2 下载免费PDF全文
A. Hovnanian L. Hilal C. Blanchet-Bardon Y. de Prost A. M. Christiano J. Uitto M. Goossens 《American journal of human genetics》1994,55(2):289-296
The generalized mutilating form of recessive dystrophic epidermolysis bullosa (i.e., the Hallopeau-Siemens type; HS-RDEB) is a life-threatening disease characterized by extreme mucocutaneous fragility associated with absent or markedly altered anchoring fibrils (AF). Recently, we reported linkage between HS-RDEB and the type VII collagen gene (COL7A1), which encodes the major component of AF. In this study, we investigated 52 unrelated HS-RDEB patients and 2 patients with RDEB inversa for the presence, at CpG dinucleotides, of mutations changing CGA arginine codons to premature stop codons TGA within the COL7A1 gene. Eight exons containing 10 CGA codons located in the amino-terminal domain of the COL7A1 gene were studied. Mutation analysis was performed using denaturing gradient gel electrophoresis of PCR-amplified genomic fragments. Direct sequencing of PCR-amplified products with altered electrophoretic mobility led to the characterization of three premature stop codons, each in a single COL7A1 allele, in four patients. Two patients (one affected with HS-RDEB and the other with RDEB inversa) have the same C-to-T transition at arginine codon 109. Two other HS-RDEB patients have a C-to-T transition at arginine 1213 and 1216, respectively. These nonsense mutations predict the truncation of approximately 56%-92% of the polypeptide, including the collagenous and the noncollagenous NC-2 domains. On the basis of linkage analysis, which showed no evidence for locus heterogeneity in RDEB, it is expected that these patients are compound heterozygotes and have additional mutations on the other COL7A1 allele, leading to impaired AF formation.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Prenatal diagnosis for recessive dystrophic epidermolysis bullosa in 10 families by mutation and haplotype analysis in the type VII collagen gene (COL7A1). 总被引:1,自引:0,他引:1 下载免费PDF全文
A. M. Christiano S. LaForgia A. S. Paller J. McGuire H. Shimizu J. Uitto 《Molecular medicine (Cambridge, Mass.)》1996,2(1):59-76
BACKGROUND: Epidermolysis bullosa (EB) is a group of heritable diseases that manifest as blistering and erosions of the skin and mucous membranes. In the dystrophic forms of EB (DEB), the diagnostic hallmark is abnormalities in the anchoring fibrils, attachment structures beneath the cutaneous basement membrane zone. The major component of anchoring fibrils is type VII collagen, and DEB has been linked to the type VII collagen gene (COL7A1) at 3p21, with no evidence for locus heterogeneity. Due to life-threatening complications and significant long-term morbidity associated with the severe, mutilating form of recessive dystrophic EB (RDEB), there has been a demand for prenatal diagnosis from families with affected offspring. MATERIALS AND METHODS: Intragenic polymorphisms in COL7A1 and flanking microsatellite markers on chromosome 3p21, as well as detection of pathogenetic mutations in families, were used to perform PCR-based prenatal diagnosis from DNA obtained by chorionic villus sampling at 10-15 weeks or amniocentesis at 12-15 weeks gestation in 10 families at risk for recurrence of RDEB. RESULTS: In nine cases, the fetus was predicted to be normal or a clinically unaffected carrier of a mutation in one allele. These predictions have been validated in nine cases by the birth of a healthy child. In one case, an affected fetus was predicted, and the diagnosis was confirmed by fetal skin biopsy. CONCLUSIONS: DNA-based prenatal diagnosis of RDEB offers an early, expedient method of testing which will largely replace the previously available invasive fetal skin biopsy at 18-20 weeks gestation. 相似文献
3.
Human type VII collagen: genetic linkage of the gene (COL7A1) on chromosome 3 to dominant dystrophic epidermolysis bullosa. 总被引:4,自引:0,他引:4 下载免费PDF全文
M Ryynnen R G Knowlton M G Parente L C Chung M L Chu J Uitto 《American journal of human genetics》1991,49(4):797-803
Epidermolysis bullosa (EB) is a heterogeneous group of heritable blistering disorders affecting the skin and the mucous membranes. Previous ultrastructural studies on the dystrophic (scarring) forms of EB have demonstrated abnormalities in the anchoring fibrils, morphologically distinct structures below the basal lamina at the dermal/epidermal basement membrane zone. Type VII collagen is the major collagenous component of the anchoring fibrils, and it is therefore a candidate gene for mutations in some families with dystrophic forms of EB. In this study, we performed genetic linkage analyses in a large kindred with dominant dystrophic EB. A 1.9-kb type VII collagen cDNA clone was used to identify a PvuII RFLP to follow the inheritance of the gene. This RFLP cosegregated with the EB phenotype in this family, strongly supporting genetic linkage (Z = 5.37; theta = .0). In addition, we assigned the type VII collagen gene (COL7A1) to chromosome 3 by hybridization to a panel of human x rodent somatic cell hybrids. These data demonstrate very close genetic linkage between the clinical phenotype in this family and the polymorphism in the type VII collagen gene mapped to chromosome 3. The absence of recombination between EB and the type VII collagen gene locus, as well as the observed abnormalities in the anchoring fibrils, strongly suggest that this collagen gene is the mutant locus in this kindred. 相似文献
4.
Posteraro P Pascucci M Colombi M Barlati S Giannetti A Paradisi M Mustonen A Zambruno G Castiglia D 《Biochemical and biophysical research communications》2005,338(3):1391-1401
Dystrophic epidermolysis bullosa (DEB) is a rare clinically heterogeneous genodermatosis due to genetic defects in type VII collagen gene (COL7A1). Identification of COL7A1 mutations is a challenge since this gene comprises 118 exons and more than 300 mutations scattered over the gene have been reported. Here, we describe for the first time the use of denaturing high performance liquid chromatography (DHPLC) for COL7A1 mutation detection. To validate the method, exon-specific DHPLC conditions were applied to screen DNA samples from patients carrying known COL7A1 mutations. Abnormal DHPLC profiles were obtained for all known mutations. Subsequent DHPLC analysis of 17 DEB families of unknown genotype allowed the identification of 21 distinct mutations, 9 of which were novel. The DHPLC mutation detection rate was significantly higher compared with our mutation scanning rate with conventional techniques (97% vs 86%), indicating DHPLC as the method of choice for COL7A1 molecular characterization in DEB patients. 相似文献
5.
Injection of recombinant human type VII collagen restores collagen function in dystrophic epidermolysis bullosa 总被引:3,自引:0,他引:3
Dystrophic epidermolysis bullosa (DEB) is a family of inherited mechano-bullous disorders that are caused by mutations in the type VII collagen gene and for which ex vivo gene therapy has been considered. To develop a simpler approach for treating DEB, we evaluated the feasibility of protein-based therapy by intradermally injecting human recombinant type VII collagen into mouse skin and a DEB human skin equivalent transplanted onto mice. The injected collagen localized to the basement membrane zone of both types of tissues, was organized into human anchoring fibril structures and reversed the features of DEB disease in the DEB skin equivalent. 相似文献
6.
7.
Mei Chen Fritz K Costa Christopher R Lindvay Yuan-Ping Han David T Woodley 《The Journal of biological chemistry》2002,277(3):2118-2124
Type VII collagen is a major component of anchoring fibrils, attachment structures that mediate dermal-epidermal adherence in human skin. Dystrophic epidermolysis bullosa (DEB) is an inherited mechano-bullous disorder caused by mutations in the type VII collagen gene and perturbations in anchoring fibrils. In this study, we produced recombinant human type VII collagen in stably transfected human 293 cell clones and purified large quantities of the recombinant protein from culture media. The recombinant type VII collagen was secreted as a correctly folded, disulfide-bonded, helical trimer resistant to protease degradation. Purified type VII collagen bound to fibronectin, laminin-5, type I collagen, and type IV collagen and also supported human dermal fibroblast adhesion. In an attempt to establish genotype-phenotype relationships, we generated two individual substitution mutations that have been associated with recessive DEB, R2008G and G2749R, and purified the recombinant mutant proteins. The G2749R mutation resulted in mutant type VII collagen with increased sensitivity to protease degradation and decreased ability to form trimers. The R2008G mutation caused the intracellular accumulation of type VII collagen. We conclude that structural and functional studies of in vitro generated type VII collagen mutant proteins will aid in correlating genetic mutations with the clinical phenotypes of DEB patients. 相似文献
8.
Cloning of the human type XVII collagen gene (COL17A1), and detection of novel mutations in generalized atrophic benign epidermolysis bullosa. 总被引:5,自引:1,他引:4
B Gatalica L Pulkkinen K Li K Kuokkanen M Ryynnen J A McGrath J Uitto 《American journal of human genetics》1997,60(2):352-365
Generalized atrophic benign epidermolysis bullosa (GABEB) is a nonlethal variant of junctional epidermolysis bullosa (JEB). Previous findings have suggested that type XVII collagen is the candidate gene for mutations in this disease. We now have cloned the entire human type XVII collagen gene (COL17A1) and have elucidated its intron-exon organization. The gene comprises 56 distinct exons, which span approximately 52 kb of the genome, on the long arm of chromosome 10. It encodes a polypeptide, the alpha1(XVII) chain, consisting of an intracellular globular domain, a transmembrane segment, and an extracellular domain that contains 15 separate collagenous subdomains, the largest consisting of 242 amino acids. We also have developed a strategy to identify mutations in COL17A1 by use of PCR amplification of genomic DNA, using primers placed on the flanking introns. The PCR products are scanned for sequence variants by heteroduplex analysis using conformation-sensitive gel electrophoresis and then are subjected to direct automated sequencing. We have identified several intragenic polymorphisms in COL17A1, as well as mutations, in both alleles, in two Finnish families with GABEB. The probands in both families showed negative immunofluorescence staining with an anti-type XVII collagen antibody. In one family, the proband was homozygous for a 5-bp deletion, 2944del5, which resulted in frameshift and a premature termination codon of translation. The proband in the other family was a compound heterozygote, with one allele containing the 2944del5 mutation and the other containing a nonsense mutation, Q1023X. These results expand the mutation database in different variants of JEB, and they attest to the functional importance of type XVII collagen as a transmembrane component of the hemidesmosomes at the dermal/epidermal junction. 相似文献
9.
Paulette Conget Fernando Rodriguez Susanne Kramer Carolina Allers Valeska Simon Francis Palisson Sergio Gonzalez Maria J. Yubero 《Cytotherapy》2010,12(3):429-431
In animal models it has been shown that mesenchymal stromal cells (MSC) contribute to skin regeneration and accelerate wound healing. We evaluated whether allogeneic MSC administration resulted in an improvement in the skin of two patients with recessive dystrophic epidermolysis bullosa (RDEB; OMIM 226600). Patients had absent type VII collagen immunohistofluorescence and since birth had suffered severe blistering and wounds that heal with scarring. Vehicle or 0.5 × 106 MSC were infused intradermally in intact and chronic ulcerated sites. One week after intervention, in MSC-treated skin type VII collagen was detected along the basement membrane zone and the dermal–epidermal junction was continuous. Re-epithelialization of chronic ulcerated skin was observed only near MSC administration sites. In both patients the observed clinical benefit lasted for 4 months. Thus intradermal administration of allogeneic MSC associates with type VII collagen replenishment at the dermal–epidermal junction, prevents blistering and improves wound healing in unconditioned patients with RDEB. 相似文献
10.
11.
Chen M O'Toole EA Muellenhoff M Medina E Kasahara N Woodley DT 《The Journal of biological chemistry》2000,275(32):24429-24435
Dystrophic epidermolysis bullosa (DEB) is an inherited mechano-bullous disorder of skin caused by mutations in the type VII collagen gene. The lack of therapy for DEB provides an impetus to develop gene therapy strategies. However, the full-length 9-kilobase type VII collagen cDNA exceeds the cloning capacity of current viral delivery vectors. In this study, we produced a recombinant type VII minicollagen containing the intact noncollagenous domains, NC1 and NC2, and part of the central collagenous domain using stably transfected human 293 cell clones and purified large quantities of the recombinant minicollagen VII from culture media. Minicollagen VII was secreted as correctly-folded, disulfide-bonded, helical trimers resistant to protease degradation. Purified minicollagen VII bound to fibronectin, laminin-5, type I collagen, and type IV collagen. Furthermore, retroviral-mediated transduction of the minigene construct into DEB keratinocytes (in which type VII collagen was absent) resulted in persistent synthesis and secretion of a 230-kDa recombinant minicollagen VII. In comparison with parent DEB keratinocytes, the gene-corrected DEB keratinocytes demonstrated enhanced cell-substratum adhesion, increased proliferative potential, and reduced cell motility, features that reversed the DEB phenotype toward normal. We conclude that the use of the minicollagen VII may provide a strategy to correct the cellular manifestations of gene defects in DEB. 相似文献
12.
Basic fibroblast growth factor: a missing link between collagen VII, increased collagenase, and squamous cell carcinoma in recessive dystrophic epidermolysis bullosa. 下载免费PDF全文
J. L. Arbiser J. D. Fine D. Murrell A. Paller S. Connors K. Keough E. Marsh J. Folkman 《Molecular medicine (Cambridge, Mass.)》1998,4(3):191-195
BACKGROUND: Patients with recessive dystrophic epidermolysis bullosa (RDEB) have deficiencies of collagen type VII and have elevated levels of fibroblast collagenase, and a greatly increased risk of cutaneous squamous cell carcinoma. Patients with other genetic blistering disorders do not have elevated collagenase or an increased risk of squamous cell carcinoma, despite chronic wounding. The connection between collagen type VII deficiency, increased collagenase, and squamous cell carcinoma is not understood. MATERIALS AND METHODS: Urine from 81 patients with RDEB (39 patients), junctional epidermolysis bullosa (JEB; 12 patients), and epidermolysis bullosa simplex (EBS; 30 patients), as well as unaffected family members of RDEB patients (33 patients), was tested for the presence of basic fibroblast growth factor (bFGF) using a sensitive radioimmunoassay. These patients included many who were enrolled in the Epidermolysis Bullosa Registry and others who were referred by their physicians. RESULTS: Fifty-one percent of patients with RDEB had elevated levels (> 5000 pg/g) of urinary bFGF. In contrast, none of the patients with JEB had elevated levels of bFGF. Twenty-one percent of clinically unaffected family members had elevated levels of bFGF, and 13% of patients with EBS had elevated levels of bFGF. The frequency of elevated bFGF values among all groups was statistically significant (p = 0.002), and the levels of bFGF in RDEB patients were significantly elevated compared with those of other groups (p < 0.05). CONCLUSIONS: We have found that patients with RDEB have elevated levels of bFGF, which may contribute to increased fibroblast collagenase and the development of squamous cell carcinoma. These results suggest a novel treatment for RDEB, namely, angiogenesis inhibitors, which may antagonize the effects of bFGF in this disorder. There are currently no other means of treatment for this disorder, which has a high morbidity and mortality rate. 相似文献
13.
Glycine substitutions in the triple-helical region of type VII collagen result in a spectrum of dystrophic epidermolysis bullosa phenotypes and patterns of inheritance. 总被引:3,自引:2,他引:3 下载免费PDF全文
A. M. Christiano J. A. McGrath K. C. Tan J. Uitto 《American journal of human genetics》1996,58(4):671-681
The dystrophic forms of epidermolysis bullosa (DEB) are characterized by fragility of the skin and mucous membranes. DEB can be inherited in either an autosomal dominant or autosomal recessive pattern, and the spectrum of clinical severity is highly variable. The unifying diagnostic hallmark of DEB is abnormalities in the anchoring fibrils, which consist of type VII collagen, and, recently, mutations in the corresponding gene, COL7A1, have been disclosed in a number of families. In this study, we report six families with glycine substitution mutations in the triple-helical region of type VII collagen. Among the six families, two demonstrated a mild phenotype, and the inheritance of the mutation was consistent with the dominantly inherited form of DEB. In the four other families, the mutation was silent in the heterozygous state but, when present in the homozygous state, or combined with a second mutation, resulted in a recessively inherited DEB phenotype. Type VII collagen is, therefore, unique among the collagen genes, in that different glycine substitutions can be either silent in heterozygous individuals or result in a dominantly inherited DEB. Inspection of the locations of the glycine substitutions along the COL7A1 polypeptide suggests that the consequences of these mutations, in terms of phenotype and pattern of inheritance, are position independent. 相似文献
14.
15.
Compound heterozygosity for COL7A1 mutations in twins with dystrophic epidermolysis bullosa: a recessive paternal deletion/insertion mutation and a dominant negative maternal glycine substitution result in a severe phenotype. 总被引:2,自引:1,他引:2 下载免费PDF全文
A. M. Christiano I. Anton-Lamprecht S. Amano U. Ebschner R. E. Burgeson J. Uitto 《American journal of human genetics》1996,58(4):682-693
16.
Tompson SW Bacino CA Safina NP Bober MB Proud VK Funari T Wangler MF Nevarez L Ala-Kokko L Wilcox WR Eyre DR Krakow D Cohn DH 《American journal of human genetics》2010,87(5):708-712
Fibrochondrogenesis is a severe, autosomal-recessive, short-limbed skeletal dysplasia. In a single case of fibrochondrogenesis, whole-genome SNP genotyping identified unknown ancestral consanguinity by detecting three autozygous regions. Because of the predominantly skeletal nature of the phenotype, the 389 genes localized to the autozygous intervals were prioritized for mutation analysis by correlation of their expression with known cartilage-selective genes via the UCLA Gene Expression Tool, UGET. The gene encoding the α1 chain of type XI collagen (COL11A1) was the only cartilage-selective gene among the three candidate intervals. Sequence analysis of COL11A1 in two genetically independent fibrochondrogenesis cases demonstrated that each was a compound heterozygote for a loss-of-function mutation on one allele and a mutation predicting substitution for a conserved triple-helical glycine residue on the other. The parents who were carriers of missense mutations had myopia. Early-onset hearing loss was noted in both parents who carried a loss-of-function allele, suggesting COL11A1 as a locus for mild, dominantly inherited hearing loss. These findings identify COL11A1 as a locus for fibrochondrogenesis and indicate that there might be phenotypic manifestations among carriers. 相似文献
17.
H. Scheffer Rein P. Stulp Edwin Verlind M. van der Meulen Leena Bruckner-Tuderman Tobias Gedde-Dahl Jr. G. J. te Meerman Arnoud Sonnenberg Charles H. C. M. Buys Marcel F. Jonkman 《Human genetics》1997,100(2):230-235
Generalised atrophic benign epidermolysis bullosa (GABEB) is a form of junctional epidermolysis bullosa with a recessive
mode of inheritance. The gene considered likely to be involved in this disease is COL17A1, since in the majority of GABEB
patients the product of that gene, the 180-kD bullous pemphigoid antigen (BP180), is undetectable in skin. We have identified
an intragenic COL17A1 microsatellite marker for which 83% of randomly selected control individuals are heterozygous. We observed
homozygosity for different alleles of this marker in five out of six collagen type XVII-negative GABEB patients of different
European descent. Five of the six COL17A1 alleles of three patients originating from the eastern part of The Netherlands were
identical, as were the haplotypes including flanking markers. The 2342delG mutation was identified in all these five alleles.
This confirms the expectation that due to genetic drift and hidden inbreeding for an autosomal recessive disorder with low
gene frequency, such as collagen type XVII-negative GABEB, most disease alleles from a restricted geographical area will be
“identical by descent”. Our results demonstrate that involvement of a candidate gene can be confirmed by looking for identity
by descent of highly informative intragenic markers.
Received: 25 October 1996 / Accepted: 6 March 1997 相似文献
18.
S Ikegawa G Nishimura T Nagai T Hasegawa H Ohashi Y Nakamura 《American journal of human genetics》1998,63(6):1659-1662
Spondylometaphyseal dysplasia (SMD) comprises a heterogeneous group of heritable skeletal dysplasias characterized by modifications of the vertebral bodies of the spine and metaphyses of the tubular bones. The genetic etiology of SMD is currently unknown; however, the type X collagen gene (COL10A1) is considered an excellent candidate, for two reasons: first, Schmid metaphyseal chondrodysplasia, a condition known to result from COL10A1 mutations, shows a significant phenotypic overlap with SMD; and, second, transgenic mice carrying deletions in type X collagen show SMD phenotypes. Hence, we examined the entire coding region of COL10A1 by direct sequencing of DNA from five unrelated patients with SMD and found a heterozygous missense mutation (Gly595Glu) cosegregating with the disease phenotype in one SMD family. This initial documented identification of a mutation in SMD expands our knowledge concerning the range of the pathological phenotypes that can be produced by aberrations of type X collagen (type X collagenopathy). 相似文献
19.