首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, proton homonuclear (COSY) and 13C-1H heteronuclear shift-correlation, n.m.r. spectroscopies have been used to assign the carbonyl carbon resonances of peracetylated D-gluco- and D-mannopyranose monosaccharides and oligosaccharides containing residues of parent D-glucopyranose monomers. Chemical shifts of these assigned resonances, particularly those arising from acetyl groups near to aglycon substitution sites, were found to be sensitive to the position and configuration of glycosidic linkages present. In addition, evidence is presented that indicates that the shifts of these carbonyl carbon resonances depend on long-range interactions with other peracetylated pyranose monomers resulting from folding of the oligosaccharide chain. These results suggest that carbonyl carbon resonances of peracetylated carbohydrates may be useful probes of oligosaccharide structure.  相似文献   

2.
The "colicin" fragments comprising the 49 3'-terminal nucleotides of 16 S ribosomal RNA have been isolated from wild-type Escherichia coli and from a kasugamycin-resistant mutant that lacks methylation of two geminal adenine residues. Proton nuclear magnetic resonance (n.m.r.) spectra (500 MHz) were recorded at various temperatures. The low-field resonances arising from the hydrogen-bonded iminoprotons of paired bases were assigned using the nuclear Overhauser effect (n.o.e.). Crucial to the interpretation of the spectra are the resonances that originate from the two hydrogen-bonded iminoprotons of a U X G basepair. Combined with temperature-jump relaxation kinetics experiments the n.o.e.s lead to the conclusion that a conserved A X U/U X G junction in the hairpin is a thermolabile dislocation in the helix. The n.m.r. spectra of the wild-type and mutant fragment are only different with respect to the iminoproton resonances of the two base-pairs adjoining the hairpin loop. The spectra recorded at various temperatures tend to indicate that dimethylation of the adenosines labilizes these base-pairs, but no definitive conclusions are drawn. The results confirm our previous views that dimethylation of the adenosine residues affects the conformation of the hairpin loop.  相似文献   

3.
The synthetic tetrapeptide acetyl-aspartyl-valyl-aspartyl-alanine (Ac-DVDA) is a model of the calcium binding site of proteins such as carp parvalbumin, thermolysin and calmodulin. 1H n.m.r. spectra of the tetrapeptide are presented and assigned for D2O and DMSO solutions to determine the conformational mobility. The resonance of the two aspartyl side chains could be completely analysed and the vicinal coupling (C alpha H-C beta H and NH-C alpha H) indicated that the free peptide has considerable conformational mobility. The Ca(II) complex generates a different 1H n.m.r. spectrum for the aspartyl resonances at neutral pH. The solution conformation of Pr(III) complex of Ac-DVDA has been investigated using induced chemical shifts. The observed trends in the magnitude of the shift ratios and the rotamer population suggest that the metal ion binds predominantly to both carboxylates of two aspartyl residues in a bidentate fashion. We discuss the consistency of the differentiated spectra for aspartyl residues in the complex with the stepwise binding of Ca2+ to the carrier.  相似文献   

4.
M Paci  C L Pon  C O Gualerzi 《FEBS letters》1988,236(2):303-308
Escherichia coli translational initiation factor IF1 was studied by 1H-NMR spectroscopy at 400 MHz. IF1 displays a very well resolved spectrum in both aromatic and aliphatic regions. Other spectral characteristics include relatively narrow resonance lines and lack of relevant cross-relaxation phenomena. The resonances of the aromatic residues, in particular of the two His and two Tyr, were assigned by selective chemical modifications and spectroscopic techniques to individual residues in the protein sequence. The relative mobility of various residues of IF1 has been evaluated on the basis of the spin-lattice relaxation times which are rather short and homogeneous. Overall the factor appears to have a complex secondary and tertiary structure and to be a flexible protein whose residues have a high degree of internal mobility.  相似文献   

5.
P401 (also known as mast cell degranulating protein, MCD) is a minor component of honeybee venom. Its primary structure is related to that of apamin. We have studied the structure of P401 in solution by high-resolution two-dimensional 1H-NMR spectroscopy. Almost all the backbone proton resonances have been assigned by sequential assignment strategy. Analysis of NOEs shows that P401 has a conformation very similar to that of apamin. N-terminal residues Ile-1-Cys-5 are in an extended conformation and residues His-13-Asn-22 on the C-terminus are in an alpha-helical structure. These two secondary structural elements are connected by two tight turns.  相似文献   

6.
All 36 ribose proton resonances and most of the base proton resonances of the hexanucleoside pentaphosphate AUAUAU have been assigned unequivocally using 2D J-resolved spectroscopy, spin echo correlated spectroscopy (SECSY) and 2D NOE spectroscopy (NOESY). The NMR parameters of AUAUAU are compared with those of smaller fragments that contain methylated adenine bases: m62AU, m62AUm62A, m62AUm62AU and m62AUm62AUm62A. Previous studies on this series of compounds have shown that in all these cases purine-pyrimidine-purine sequences prefer to adopt a mixture of states which have as common feature that the interior pyrimidine residues are bulged out, whereas the purine residues stack upon each other. Chemical shift data, proton-proton coupling constants, as well as the observation of imino-proton resonances for AUAUAU show unambiguously that upon lowering the temperature the high-temperature "bulged out" situation reverts to a normal A-RNA-like double helix.  相似文献   

7.
The 1H-n.m.r. spectra of human somatotropin (growth hormone) show perturbed peaks from individual aromatic and aliphatic apolar residues, characteristic of a specifically folded globular structure. The imidazole C-2-H resonances of the histidine residues (at positions 18, 21 and 151 in the somatotropin sequence) were individually resolved, and their titration behaviour in the pH range 1.2-11.5 was investigated. The imidazole C-2-H resonance of histidine-151 is assigned, by comparison of its titration behaviour in human somatotropin and desamido-somatotropin (Asn-152 leads to Asp-152). The C-2-H resonances of all three histidine residues are assigned, by comparison of their relative deuterium-exchange rates (determined by n.m.r.) and the relative tritium-exchange rates of the histidine residues (determined by tryptic digestion of tritiated human somatotropin and reversed-phase high-pressure liquid-chromatographic separation of the histidine-containing tryptic peptides). There is evidence that histidine-18 forms an ion-pair bond with a glutamic acid or aspartic acid residue. The globular structure does not appear to change from pH3 to 11.5, though there is evidence for an unfolding of a region of the structure (involving histidine-21 and a tyrosine residue) below pH3.  相似文献   

8.
Proton nuclear magnetic resonance (n.m.r.) experiments were used to probe base-pair formation in several hammerhead RNA enzyme (ribozyme) domains. The hammerhead domains consist of a 34 nucleotide ribozyme bound to a complementary 13 nucleotide non-cleavable DNA substrate. Three hammerhead domains were studied that differ in the sequence and stability of one of the helices involved in recognition of the substrate by the ribozyme. The n.m.r. data show a 1:1 stoichiometry for the ribozyme-substrate complexes. The imino proton resonances in the hammerhead complexes were assigned by two-dimensional nuclear Overhauser effect experiments. These data confirm the presence of two of the three helical regions in the hammerhead domain, predicted from phylogenetic data; and are also consistent with the formation of the third helix. Since a divalent cation is required for efficient catalytic activity of the hammerhead domain, the magnesium ion dependence of the n.m.r. spectra was studied for two of the hammerhead complexes. One of the complexes showed very large spectral changes upon addition of magnesium ions. However, the complex that has the most C.G base-pairs in one of the recognition helices shows essentially no spectral (and therefore presumably structural) changes upon addition of magnesium. These data are consistent with a model where the magnesium binding site already exists in the magnesium-free complex, suggesting that the magnesium ion serves primarily a catalytic, and not a structural, role under the conditions used here.  相似文献   

9.
The 170MHZ 1 H n.m.r. spectra of the Cu(II)/Zn(II), Cu(I)/Zn(II) and apo- forms of human erythrocyte superoxide dismutase (EC 1.15.1.1) are reported. Resonances are assigned to the C-2 and C-4 protons of histidine residues in the active site, and it is suggested that five or six histidine residues serve as ligands to the metal ions in each subunit of the enzyme. The remaining assigned resonances are associated with histidine-41, N-terminal N-acetyl group, histidine- 108 and cysteine- 109. A comparison of the n.m.r. spectra of human and bovine superoxide dismutases suggests significant structural homology.  相似文献   

10.
Two-dimensional proton nuclear magnetic resonance (n.m.r.) experiments were performed on the coat protein of cowpea chlorotic mottle virus (molecular mass: 20.2 kDa) present as dimer (pH 7.5) or as capsid consisting of 180 protein monomers (pH 5.0). The spectra of both dimers and capsids showed resonances originating from the flexible N-terminal region of the protein. The complete resonance assignment of a synthetic pentacosapeptide representing this N terminus made it possible to interpret the spectra in detail. The capsid spectrum showed backbone amide proton resonances arising from the first eight residues having a flexible random coil conformation, and side-chain resonances arising from the first 25 N-terminal amino acids. The dimer spectrum showed also side-chain resonances of residues 26 to 33, which are flexible in the dimer but immobilized in the capsid. The n.m.r. experiments indicated that the conformation of the first 25 amino acids of the protein in dimers and capsids is comparable to the conformation of the synthetic peptide, which alternates among extended and helical conformations on the n.m.r. time-scale. It is suggested that the alpha-helical region, situated in the region between residues 10 and 20, binds to the RNA during assembly of the virus particle.  相似文献   

11.
A 500 MHz 1H-n.m.r. study on the semi-synthetic RNA pentadecamer 5'-r(C-A-G-A-Cm-U-Gm-A-A-Y-A-psi-m5C-U-G) comprising the anticodon loop and stem (residues 28-42) of yeast tRNAPhe is presented. By using pre-steady-state nuclear-Overhauser-effect measurements all exchangeable and non-exchangeable base proton resonances, all H1' ribose resonances and all methyl proton resonances are assigned and over 70 intra- and inter-nucleotide interproton distances determined. From the distance data the solution structure of the pentadecamer is solved by model-building. It is shown that the pentadecamer adopts a hairpin-loop structure in solution with the loop in a 3'-stacked conformation. This structure is both qualitatively and quantitatively remarkably similar to that of the anticodon loop and stem found in the crystal structures of tRNAPhe with an overall root-mean-square difference of 0.12 nm between the interproton distances determined by n.m.r. and X-ray crystallography. The hairpin-loop solution structure of the pentadecamer is very stable with a 'melting' temperature of 53 degrees C in 500 mM-KCl, and the structural features responsible for this high stability are discussed. Interaction of the pentadecamer with the ribotrinucleoside diphosphate UpUpC, one of the codons for the amino acid phenylalanine, results only in minor perturbations in the structure of the pentadecamer, and the 3'-stacked conformation of the loop is preserved. The stability of the pentadecamer-UpUpC complex (K approximately 2.5 X 10(4) M-1 at 0 degrees C) is approximately an order of magnitude greater than that of the tRNAPhe-UpUpC complex.  相似文献   

12.
The 1H-NMR spectra of cobrotoxin, a neurotoxic protein isolated from Formosan cobra Naja naja atra, have been studied by two-dimensional NMR techniques. Of 62 amino acid residues in cobrotoxin, the complete assignments of 58 residues have been made. The resonances from several of the remaining residues have been identified but not yet specifically assigned. The secondary structure of an antiparallel triple- and double-stranded beta-sheet has also been determined by observing the NOE.  相似文献   

13.
The effect of binding of the codon UUC to yeast tRNAPhe was investigated by means of n.m.r.2 spectroscopy and analytical ultracentrifugation. Binding of UUC to the transfer RNA anticodon tends to promote the aggregation of tRNA molecules; this is manifest from a line broadening in the n.m.r. experiments as well as from an increase in s20,w the ultracentrifuge experiments. Such an aggregation of tRNA molecules was not observed upon addition of different oligonucleotides, as described in the accompanying paper. In addition to the general broadening observed in the n.m.r. spectra, specific resonances in the methyl proton spectrum as well as in the hydrogen-bonded proton spectrum are broadened or shifted upon binding of UUC.These results are explained on the basis of the premise that two different tRNA-UUC complexes can exist in solution. It is suggested that the binding of UUC tends to promote a disruption of the m7G46 · m22G22 base-pair and its neighbouring base-pairs.In studying the binding of U-U-U-U to yeast tRNAPhe no resonances of protons hydrogen-bonded between the oligonucleotide and the tRNA could be detected at low temperatures. This indicates, that at these temperatures the lifetime of the tRNA-U-U-U-U complex is substantially shorter than the lifetime of the other tRNA-oligonucleotide complexes studied in this and the accompanying paper under these conditions.  相似文献   

14.
Respiratory-defective mutants of Saccharomyces cerevisiae assigned to a single complementation group (G12) have been determined to have lesions in the iron-sulfur protein (Rieske protein) of ubiquinol: cytochrome c reductase. Mutants capable of expressing the protein were chosen for further studies. The genes from 13 independent isolates were cloned and their mutations sequenced. Twelve mutations were ascertained to cause single amino acid substitutions in the carboxyl-terminal regions of the protein between residues 127 and 173. This region is proposed to be part of the catalytic domain with the ligands responsible for co-ordinating the two irons of the 2Fe-2S cluster. Based on the catalytic properties of the ubiquinol: cytochrome c reductase complex and the electron paramagnetic resonance (e.p.r.) signals of the iron-sulfur protein, the mutants describe two different phenotypes. A subset of mutants have no detectable iron-sulfur cluster and are completely deficient in ubiquinol: cytochrome c reductase activity. These strains identify mutations in residues considered to be essential for binding of the iron or for maintaining a proper tertiary structure of the catalytic domain. A second group of mutants have reduced levels of enzymatic activity and exhibit e.p.r. spectra characteristic of the Rieske iron-sulfur cluster. The mutations in the latter strains have been ascribed to residues that influence the redox properties of the cluster by distorting the iron-binding pocket. A secondary and tertiary structure model is presented of the carboxyl-terminal 65 residues constituting the catalytic domain of the iron-sulfur protein. It is postulated that the two irons of the cluster are co-ordinated by three cysteine and a single histidine residue located in a loop structure. The catalytic domain also contains two short alpha-helices and three beta-strands that form a partial beta-barrel. Most of the hydrophilic amino acids are present in turns that map to one pole of the domain. When viewed in the context of the model, mutations that abolish the iron-sulfur cluster are mostly in residues defining the boundaries of the alpha-helices and beta-strands. The notable exception is a cysteine residue that has been assigned to the loop with the iron ligands. This cysteine residue is proposed to co-ordinate one iron of the cluster. Mutations that reduce ubiquinol: cytochrome c reductase activity and alter the redox potential of the cluster occur in residues located in the loop that contains the ligands of the cluster.  相似文献   

15.
A proton nuclear magnetic resonance (NMR) study at 100 and 300 MHz of neurotoxin II from the venom of Middle-Asian cobra Naja naja oxiana has been performed in 2H2O and H2O solutions. By means of chemical modification and double resonance all the aromatic residue resonances have been assigned. From the NMR titration curves, pK values of histidine 4 and histidine 31 residues have been determined. For one of the two neighbouring tryptophan residues pH dependence (in the 2-8-pH range) of the chemical shifts of indole protons has been revealed. According to the different sensitivity of the linewidth of indole NH resonances to pH in H2O solution, the accessibility of each of the tryptophan residues has been estimated. Temperature dependence has been observed for the linewidth of the aromatic resonances of the tyrosine 24 residue. Deuterium exchange rates have been measured for amide protons as well as for C(2)H histidine resonances. The NMR data obtained have allowed the conclusions to be made that the two histidine residues and one of the tryptophan residues should be localized on the surface of the protein globule, that arginine residues should be present in the environment of histidine 4, that histidine 31 and the buried tryptophan are possibly localized in close spatial proximity and that the side chain of tyrosine 24 is buried within the protein globule.  相似文献   

16.
This paper reports the initial progress in a research programme to identify and obtain the relative orientations, in solution, of the amino acid residues that constitute the combining site of the myeloma protein MOPC 315. This protein has a molecular mass of 150,000, but enzymic digestion yields the Fv fragment of molecular mass 25,000 which still has the combining site intact, as judged by the affinity for dinitrophenyl haptens. Analysis of the e.s.r. spectra of a series of dinitrophenyl spin labelled haptens has allowed the dimensions, rigidity and polarity profile of the combining site to be determined. The combining site is a cleft of overall dimensions 1.1 nm x 0.9 nm x 0.6 nm which has considerable structural rigidity. One of these spin labels has also been used to perturb the n.m.r. spectrum of the Fv and using difference spectroscopy the 270 MHz proton n.m.r. spectrum of the amino acid residues in and around the combining site has been obtained. This spectrum contains only the equivalent of about 30 aromatic and 21 aliphatic protons. Comparison of this difference spectrum with that obtained using a diamagnetic analogue suggests that any conformational changes on hapten binding are mainly localized to the combining site. By the use of (n.m.r.) difference spectroscopy the protons of the three histidine residues in the Fv are observed to titrate with pH and have pKa values of about 8.1, 6.9 and 6.1. The histidine resonances with pKa values 6.9 and 6.1 alter slightly in the presence of haptens and also appear in the spin label difference spectrum, and must therefore be in or near to the combining site. These are assigned to His 102H and His 97L. The existence of lanthanide binding sites on the Fv, necessary for the mapping studies, has been demonstrated by measurements of Gd III water relaxation rates in Fv solutions and also by the changes in the Fv tryptophan fluorescence on addition of Gd III. At pH 5.5 there is one tight binding site for the lanthanides (KD approximately 80 muM) but in the presence of hapten this is weakened 10-20 fold with a reciprocal effect on the hapten binding. Measurements of the Gd III quenching of the e.s.r. spectrum of a spin labelled hapten bound to Fv indicate that the lanthanide site is ca. 1.5 nm from the nitroxide moiety.  相似文献   

17.
The specific assignment of resonances in the 300-MHz 1H nuclear magnetic resonance (NMR) spectrum of anthopleurin-A, a polypeptide cardiac stimulant from the sea anemone Anthopleura xanthogrammica, is described. Assignments have been made using two-dimensional NMR techniques, in particular the method of sequential assignments, where through-bond and through-space connectivities to the peptide backbone NH resonances are used to identify the spin systems of residues adjacent in the amino acid sequence. Complete assignments have been made of the resonances from 33 residues out of a total of 49, and partial assignments of a further 3. The resonances from several of the remaining residues have been identified but not yet specifically assigned. A complicating factor in making these assignments is the conformational heterogeneity exhibited by anthopleurin-A in solution. The resonances from a number of amino acid residues in the minor conformer have also been assigned. These assignments contribute towards identification of the origin of this heterogeneity, and permit some preliminary conclusions to be drawn regarding the secondary structure of the polypeptide.  相似文献   

18.
Soluble spin labels, which "bleach" the surface proton resonances of a protein to n.m.r. measurements, can provide useful information about protein conformation and dynamics. The use of the soluble nitroxide, TEMPOL, has been explored to show the correlation of the paramagnetic perturbations of protein two-dimensional n.m.r. data with proton exposure to the free radical in hen egg-white lysozyme. The results demonstrate that the nitroxide approaches the protein randomly, and that the extent of the observed paramagnetic effects reflects the native folding pattern of the protein. A correlation of spectral simplification with the known tertiary structure establishes the feasibility of new strategies for topological mapping of surface and buried protons of the protein. Application to the elucidation of protein structure and to the study of dynamical processes is discussed.  相似文献   

19.
The assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the protease inhibitor IIA from bull seminal plasma is described and documented. The assignments are based entirely on the amino acid sequence and on two-dimensional n.m.r. experiments at 500 MHz. Individual assignments were obtained at 18 degrees C and 45 degrees C for the backbone protons of all 57 amino acid residues, with the single exception of the N-terminal pyroglutamate amide proton. The amino acid side-chain resonance assignments are complete, with the exception of 17 long side-chains, i.e. Pro13, Met43 and all the Glu, Gln, Lys and Arg, where only one or two resonances of C beta H2 and in some cases C gamma H2 could be identified. The sequential assignments showed that the order of the two C-terminal residues in the previously established primary structure had to be changed; this was then confirmed by chemical methods. The chemical shifts for the assigned resonances at 18 degrees C and 45 degrees C are listed for an aqueous solution at pH 4.9. A preliminary characterization of the polypeptide secondary structure was obtained from the observed patterns of sequential connectivities.  相似文献   

20.
The specific complex between the lambda phage OR3 operator and the Cro protein has been studied by proton NMR spectroscopy at 500 MHz. The DNA imino proton resonances of this complex have been assigned to specific base pairs using the known assignments of these resonances for the free operator. Increase of the protein/DNA ratio to complete saturation of the OR3 operator with the Cro protein made it possible to follow the shift changes of the resonances. Ambiguities were resolved by nuclear Overhauser effect measurements on the complex. The shifts of the imino proton resonance positions provide information on the changes induced in the conformation of the operator upon complex formation with a dimer of the Cro protein. The most striking shift occurs for the central (GC 9) base pair, which is known to have no direct contacts with the Cro protein. This shift may be induced by a bend in the OR3 operator DNA at the GC 9 base pair to accommodate the operator for the binding of the Cro protein dimer. The imino proton resonances of two additional base pairs can be observed in the complex, demonstrating an overall stabilization of the DNA structure by the binding of the Cro protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号