首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane transport and cytokinin action in root hairs of Medicago sativa   总被引:1,自引:0,他引:1  
In an effort to develop a cellular model for studying cytokinin action in higher plants, we investigated the effect of cytokinins on growth and membrane transport in root hairs of alfalfa (Medicago sativa␣L.) seedlings. Alfalfa seedlings grown for 24 h in the presence of cytokinins showed increased root hair length and formation of root hairs close to the root cap. Increased growth of root hairs was observed within 10 min of cytokinin application and was accompanied by a hyperpolarization of the plasma membrane. The ion-transport inhibitor diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) blocked both cytokinin-induced root hair growth and hyperpolarization but did not, by itself, alter growth or membrane potential. Finally, hyperpolarization was induced by extracellular cytokinin but not by injection of cytokinin into the cytoplasm. These findings show that root hairs undergo several rapid responses to cytokinin, including changes in membrane transport and growth. We conclude that multiple cytokinin response in root hairs may be mediated by events involving perception and ion transport at the plasma membrane. Received: 18 July 1996 / Accepted: 1 October 1996  相似文献   

2.
3.
The tightly regulated expression patterns of structural cell wall proteins in several plant species indicate that they play a crucial role in determining the extracellular matrix structure for specific cell types. We demonstrate that AtPRP3, a proline-rich cell wall protein in Arabidopsis, is expressed in root-hair-bearing epidermal cells at the root/shoot junction and within the root differentiation zone of light-grown seedlings. Several lines of evidence support a direct relationship between AtPRP3 expression and root hair development. AtPRP3/beta-glucuronidase (GUS) expression increased in roots of transgenic seedlings treated with either 1-aminocyclopropane-1-carboxylic acid (ACC) or alpha-naphthaleneacetic acid (alpha-NAA), compounds known to promote root hair formation. In the presence of 1-alpha-(2-aminoethoxyvinyl)glycine (AVG), an inhibitor of ethylene biosynthesis, AtPRP3/GUS expression was strongly reduced, but could be rescued by co-addition of ACC or alpha-NAA to the growth medium. In addition, AtPRP3/GUS activity was enhanced in ttg and gl2 mutant backgrounds that exhibit ectopic root hairs, but was reduced in rhd6 and 35S-R root-hair-less mutant seedlings. These results indicate that AtPRP3 is regulated by developmental pathways involved in root hair formation, and are consistent with AtPRP3's contributing to cell wall structure in Arabidopsis root hairs.  相似文献   

4.
Auxin and ethylene promote root hair elongation in Arabidopsis   总被引:9,自引:0,他引:9  
Genetic and physiological studies implicate the phytohormones auxin and ethylene in root hair development. To learn more about the role of these compounds, we have examined the root hair phenotype of a number of auxin- and ethylene-related mutants. In a previous study, Masucci and Schiefelbein (1996) showed that neither the auxin response mutations aux1 and axr1 nor the ethylene response mutations etr1 and ein2 have a significant effect on root hair initiation. In this study, we found that mutants deficient in either auxin or ethylene response have a pronounced effect on root hair length. Treatment of wild-type, axr1 and etr1 seedlings with the synthetic auxin, 2,4-D, or the ethylene precursor ACC, led to the development of longer root hairs than untreated seedlings. Furthermore, axr1 seedlings grown in the presence of ACC produce ectopic root hairs and an unusual pattern of long root hairs followed by regions that completely lack root hairs. These studies indicate that both auxin and ethylene are required for normal root hair elongation.  相似文献   

5.
6.
Root hair formation is induced when lettuce seedlings are transferred from liquid medium at pH 6.0 to fresh medium at pH 4.0. If seedlings are transferred to pH 6.0, no root hairs are formed. We investigated the role of microtubules in this low pH-induced root hair initiation in lettuce. At the hair-forming zone in root epidermal cells, microtubules were perpendicular to the longitudinal axis of the cell just after pre-culture. This arrangement became disordered as early as 5 min after transfer to pH 4.0, and became random by 30 min later. At pH 4.0, the randomization extended to the entire hair-forming zone of seedlings; at pH 6.0, however, randomization did not occur and transverse microtubules were maintained. When seedlings at pH 6.0 were treated with microtubule-depolymerizing drugs, root hairs were formed. In contrast, when a microtubule-stabilizing drug, taxol, was added to the medium, no root hairs formed, even at pH 4.0. These results suggest that the transverse cortical microtubules inhibit root hair formation, and that their destruction is necessary for initiation. Furthermore, the microfilament-disrupting drugs cytochalasin B and latrunculin B inhibited root hair initiation, suggesting that actin filaments are necessary for root hair initiation.  相似文献   

7.
Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.  相似文献   

8.
The study was focused on localization of "free" phenolic compounds in pea Pisum sativum L. seedling roots grown at 22 and 8 degrees C 24 h after their inoculation with Rhizobium leguminosarum bv. viceae bacteria. A comparison of phenolic compound distribution along the root in root tissues, and results of observation of root hair development on the root surface, response of root hairs to inoculation, manifesting itself in various deformation degree (bends, twists, ect.) enabled us to reveal differences between roots grown at different temperatures. These differences are basically referred to a sector localized 0-5 mm away from the root tip containing meristematic and extending cells. A distribution of phenolic compounds in sectors with root hairs responding to inoculation by various degrees of contortion practically did not depend on the temperature of plant growth. The evidence provided in the course of this work enabled us to suggest that inhibition of pea root infection at low temperature is caused by decelerated growth processes characteristic of both the root itself and root hairs, as well by a slow increase in the root hair zone.  相似文献   

9.
In this study, data on the production of branched root hairs in the seedlings of A. thaliana under progressive water deficit were presented. The overall production of branched hairs was quite high under stress conditions and amounted to 8.27%. On the contrary, this form of root hairs was almost absent in the control group (0.27%). The highest number of branched hairs was produced at the beginning of the stress action. Branched root hairs are quite uniform structures in the sense of their morphology. To solve the question of how the branched hairs grow, the structure of actin cytoskeleton was explored. This structure was different in the root hair and in its branch, which is an indication that the hair stops its growth at the moment when the branching starts. We have also characterized the production of branched root hairs in hormonal mutants of Arabidopsis and found the involvement of auxin in this process.  相似文献   

10.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

11.
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.  相似文献   

12.
Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.  相似文献   

13.
Root hairs are a primary site for nutrient absorption and for initiation of signalling processes linked to variations of the root environment:plant-microbe interactions or abiotic changes. In many of these cases, the earliest detectable response is the modification of plasma membrane transports, detected through alteration of the electrical membrane potential. In spite of this, root hairs have not been extensively used in electrophysiological research so far. Problems with cell shape and current coupling are often prohibitive for microelectrode voltage-clamp on intact root hairs. In the present study, these difficulties have been overcome and the ion channel currents are described for young root hairs from alfalfa seedlings (Medicago sativa cv Sitel). Electrophysiological and pharmacological studies indicated an inward rectifying K+ time-dependent current. This current was sensitive to tetraethylammonium and Cs+ (10 mM each). Two other currents never shown in root hairs were described: an outward rectifying time-dependent K+ current, inhibited by tetraethylammonium and Cs+ (10 mM each) allowing K+ efflux under strong depolarizations and an instantaneous inward current identified as an anion current, inhibited by 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid and anthracene-9-carboxylic acid (100 μM each). These results should contribute to the understanding of root hair development and of signalling processes in M. sativa root hairs.  相似文献   

14.
Root hairs are unicellular extensions of specialized epidermis cells. Under limiting conditions, they significantly increase the water and nutrient uptake capacity of plants by enlarging their root surface. Thus far, little is known about the initiation and growth of root hairs in the monocot model species maize. To gain a first insight into the protein composition of these specialized cells, the 2573 most abundant proteins of maize root hairs attached to four-day-old primary roots of the inbred line B73 were identified by combining 1DE with nanoLC-MS/MS in a shotgun proteomic experiment. Among the identified proteins, homologues of 252 proteins have been previously associated with root hair formation and development in other species. Comparison of the root hair reference proteome of the monocot species maize with the previously published root hair proteome of the dicot species soybean revealed conserved, but also unique, protein functions in root hairs of these two major groups of flowering plants.  相似文献   

15.
16.
Kim CM  Park SH  Je BI  Park SH  Park SJ  Piao HL  Eun MY  Dolan L  Han CD 《Plant physiology》2007,143(3):1220-1230
Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice.  相似文献   

17.
In the light, transfer of lettuce seedlings precultured on liquid medium at pH 6.0 to fresh medium at pH 4.0 induces root hair formation. However, no root hairs form in the dark. Here, we investigated how light induces root hair formation. Randomization of the transverse cortical microtubule (CMT) arrays which occurs in root epidermal cells in the light prior to root hair initiation was not observed in the dark. However, addition of indole-3-acetic acid (IAA) or 1-aminocyclopropane-1-carboxylic acid (ACC) induced CMT randomization and root hair formation. In these cases, CMT randomization occurred in almost the same time-dependent manner as under light. However, root hair initiation was delayed for several hours in the dark. These results suggest that light promotes CMT randomization and root hair initiation via auxin and ethylene signaling but light additionally influences root hair initiation independently of these signaling mechanisms. Furthermore, addition of a microtubule-depolymerizing drug in the dark disrupted the transverse CMT arrays and initiated root hair formation; however, root hair elongation was still suppressed. Root hairs elongated when IAA or ACC was applied with the drug. These results suggest that light also promotes root hair elongation via auxin and ethylene signaling.  相似文献   

18.
19.
This report describes the early cytological events in the infection byRhizobium leguminosarum biovartrifolii of the root hairs ofTrifolium repens seedlings kept alive on agar medium in glass slide culture experiment. The infection threads bearing rhizobia were formed as soon as the epidermal cells began to emerge as root hairs. On the top of some of these infected emerging root hairs, there were smoky, cell-debris-like bodies, which appeared to be derived from the cell wall dug by rhizobia. Similar bodies were also observed in longer root hairs. None of the root hair cells along the length of the roots which contained infection threads were curled or distorted. A substantial number of pink-colored nodules were later formed on the roots with non-curled infected root hairs.  相似文献   

20.
Kelly MN  Irving HR 《Planta》2003,216(4):674-685
Nod factors are lipo-chito-oligosaccharides secreted by rhizobia that initiate many responses in the root hairs of the legume hosts, culminating in deformed hairs. The heterotrimeric G-protein agonists mastoparan, Mas7, melittin, compound 48/80 and cholera toxin provoke root hair deformation, whereas the heterotrimeric G-protein antagonist pertussis toxin inhibits mastoparan and Nod factor NodNGR[S]- (from Rhizobiumsp. NGR234) induced root hair deformation. Another heterotrimeric G-protein antagonist, isotetrandrine, only inhibited root hair deformation provoked by mastoparan and melittin. These results support the notion that G-proteins are implicated in Nod factor signalling. To study the role of G-proteins at a biochemical level, we examined the GTP-binding profiles of root microsomal membrane fractions isolated from the nodulation competent zone of Vigna unguiculata(L.) Walp. GTP competitively bound to the microsomal membrane fractions labelled with [(35)S]GTPgammaS, yielding a two-site displacement curve with displacement constants ( K(i)) of 0.58 micro M and 0.16 mM. Competition with either ATP or GDP revealed a one-site displacement curve with K(i) of 4.4 and 29 micro M, respectively, whereas ADP and UTP were ineffective competitors. The GTP-binding profiles of microsomal membrane fractions isolated from roots pretreated with either NodNGR[S] or the four-sugar, N- N'- N"- N'"-tetracetylchitotetraose (TACT) backbone of Nod factors were significantly altered compared with control microsomal fractions. To identify candidate proteins, membrane proteins were separated by SDS-PAGE and electrotransferred to nitrocellulose. GTP overlay experiments revealed that membrane fractions isolated from roots pretreated with NodNGR[S] or TACT contained two proteins (28 kDa and 25 kDa) with a higher affinity for GTPgammaS than control membrane fractions. Western analysis demonstrated that membranes from the pretreated roots contained more of another protein (~55 kDa) recognised by Galpha(common) antisera. These results provide pharmacological and biochemical evidence supporting the contention that G-proteins are involved in Nod factor signalling and, importantly, implicate monomeric G-proteins in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号