首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A chromosomal region of Pectobacterium chrysanthemi PY35 that contains of genes for glycogen synthesis was isolated from a cosmid library. The operon consists of glycogen branching enzyme (glgB), glycogen debranching enzyme (glgX), ADP-glucose pyrophosphorylase (glgC), glycogen synthase (glgA), and glycogen phosphorylase (glgP) genes. Gene organization is similar to that of Escherichia coli. The purified ADP-glucose pyrophosphorylase (GlgC) was activated by fructose 1,6-bisphosphate and inhibited by AMP. The constructed glgX::Omega mutant failed to integrate into the chromosome of P. chrysanthemi by marker exchange. Phylogenetic analysis based on the 16S rDNA and the amino acid sequence of Glg enzymes showed correlation with other bacteria. gamma-Proteobacteria have the glgX gene instead of the bacilli glgD gene in the glg operon. The possible evolutionary implications of the results among the prokaryotes are discussed.  相似文献   

3.
4.
The putative glgX gene encoding isoamylase-type debranching enzyme was isolated from the cyanobacterium, Synechococcus elongatus PCC 7942. The deduced amino acid sequence indicated that the residues essential to the catalytic activity and substrate binding in bacterial and plant isoamylases and GlgX proteins were all conserved in the GlgX protein of S. elongatus PCC 7942. The role of GlgX in the cyanobacterium was examined by insertional inactivation of the gene. Disruption of the glgX gene resulted in the enhanced fluctuation of glycogen content in the cells during light-dark cycles of the culture, although the effect was marginal. The glycogen of the glgX mutant was enriched with very short chains with degree of polymerization 2 to 4. When the mutant was transformed with putative glgX genes of Synechocystis sp. PCC 6803, the short chains were decreased as compared to the parental mutant strain. The result indicated that GlgX protein contributes to form the branching pattern of polysaccharide in S. elongatus PCC 7942.  相似文献   

5.
6.
The acidic Calcofluor-binding exopolysaccharide of Rhizobium meliloti Rm1021 plays one or more critical roles in nodule invasion and possibly in nodule development. Two loci, exoR and exoS, that affect the regulation of synthesis of this exopolysaccharide were identified by screening for derivatives of strain Rm1021 that formed mucoid colonies that fluoresced extremely brightly under UV light when grown on medium containing Calcofluor. The exopolysaccharide produced in large quantities by the exoR95::Tn5 and exoS96::Tn5 strains was indistinguishable from that produced by the parental strain Rm1021, and its synthesis required the function of at least the exoA, exoB, and exoF genes. Both the exoR and exoS loci were located on the chromosome, and the exo96::Tn5 mutation was 84% linked to the trp-33 mutation by phi M12 transduction. Synthesis of the Calcofluor-binding exopolysaccharide by strain Rm1021 was greatly stimulated by starvation for ammonia. In contrast, the exoR95::Tn5 mutant produced high levels of exopolysaccharide regardless of the presence or absence of ammonia in the medium. The exoS96::Tn5 mutant produced elevated amounts of exopolysaccharide in the presence of ammonia, but higher amounts were observed after starvation for ammonia. The presence of either mutation increased the level of expression of exoF::TnphoA and exoP::TnphoA fusions (TnphoA is Tn5 IS50L::phoA). Analyses of results obtained when alfalfa seedlings were inoculated with the exoR95::Tn5 strain indicated that the mutant strain could not invade nodules. However, pseudorevertants that retained the original exoR95::Tn5 mutation but acquired unlinked suppressors so that they produced an approximately normal amount of exopolysaccharide were able to invade nodules and fix nitrogens. The exoS95::Tn5 strain formed Fix+ nodules, although some minor variability was observed.  相似文献   

7.
A method for developing a single-transposon-insertion mutant from a double-insertion mutant in Rhizobium is described. An exopolysaccharide (EPS)-defective mutant containing two Tn 5-lacZ insertions was complemented with cloned wild-type DNA for EPS synthesis. One of the Tn 5-lacZ insertions from the mutant was transferred to the complementing plasmid by homologous recombination. The plasmid containing the Tn 5-lacZ insertion in the gene involved in EPS synthesis was transferred into the wild-type strain and the Tn 5-lacZ was homogenized to obtain an EPS-defective mutant with a single Tn 5-lacZ insertion.  相似文献   

8.
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. leguminosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutant, or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.  相似文献   

9.
10.
The ndvA and ndvB genes of Rhizobium meliloti are involved in the export and synthesis, respectively, of the small cyclic polysaccharide beta(1,2)glucan. We have previously shown that spontaneous symbiotic pseudorevertants of ndv mutants do not produce periplasmic beta(1,2)glucan. Here we show that the pseudorevertants also do not produce extracellular beta(1,2)glucan, but do show alterations in the amount of the major acidic exopolysaccharide produced. This exopolysaccharide is not detectably different from that produced by the wild type or by the ndv mutants. A cosmid which suppresses the symbiotic defect of both ndvA and ndvB mutants was isolated from a gene bank prepared from DNA of an ndvA pseudorevertant. This cosmid contains a number of exo genes, including exoH and exoF. Subcloning and Tn5 mutagenesis were used to show that the widely separated exoH and exoF genes are both involved in suppression of the ndv mutant phenotype and that the 3.5 kb DNA fragment which contains the exoH gene does not carry the mutation responsible for second site suppression.  相似文献   

11.
The plant-pathogenic prokaryote Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, one of the most destructive diseases of rice. A nonpolar mutant of the rsmA-like gene rsmA(Xoo) of the Xoo Chinese strain 13751 was constructed by homologous integration with a suicide plasmid. Virulence tests on a host plant, namely the hybrid rice cultivar Teyou 63, showed that the mutant had lost its virulence almost completely, whereas tests on a nonhost, namely castor-oil plant (Ricinus communis), showed that the mutant had also lost the ability to induce a hypersensitive response in the nonhost. In addition, the rsmA(Xoo) mutant produced significantly smaller amounts of the diffusible signal factor, extracellular endoglucanase, amylase and extracellular polysaccharide, but showed significantly higher glycogen accumulation, bacterial aggregation and cell adhesion. The expression of most hrp genes, genes encoding AvrBs3/PthA family members, rpfB, xrvA, glgA, eglXoB and XOO0175 (encoding an α-amylase) was down-regulated in the rsmA(Xoo) mutant. All phenotypes and expression levels of the tested genes in the rsmA(Xoo) mutant were restored to their levels in the wild-type by the presence of rsmA(Xoo) in trans. These results indicate that rsmA(Xoo) is essential for the virulence of Xoo.  相似文献   

12.
Vibrio fischeri, a luminescent marine bacterium, specifically colonizes the light organ of its symbiotic partner, the Hawaiian squid Euprymna scolopes. In a screen for V. fischeri colonization mutants, we identified a strain that exhibited on average a 10-fold decrease in colonization levels relative to that achieved by wild-type V. fischeri. Further characterization revealed that this defect did not result from reduced luminescence or motility, two processes required for normal colonization. We determined that the transposon in this mutant disrupted a gene with high sequence identity to the pgm (phosphoglucomutase) gene of Escherichia coli, which encodes an enzyme that functions in both galactose metabolism and the synthesis of UDP-glucose. The V. fischeri mutant grew poorly with galactose as a sole carbon source and was defective for phosphoglucomutase activity, suggesting functional identity between E. coli Pgm and the product of the V. fischeri gene, which was therefore designated pgm. In addition, lipopolysaccharide profiles of the mutant were distinct from that of the parent strain and the mutant exhibited increased sensitivity to various cationic agents and detergents. Chromosomal complementation with the wild-type pgm allele restored the colonization ability to the mutant and also complemented the other noted defects. Unlike the pgm mutant, a galactose-utilization mutant (galK) of V. fischeri colonized juvenile squid to wild-type levels, indicating that the symbiotic defect of the pgm mutant is not due to an inability to catabolize galactose. Thus, pgm represents a new gene required for promoting colonization of E. scolopes by V. fischeri.  相似文献   

13.
Structural gene mutants of the glycogen biosynthetic enzymes adenosine diphosphate glucose pyrophosphorylase (glgC) and glycogen synthase (glgA) were isolated and partially characterized. The cotransduction frequencies of these genes with the aspartic semialdehyde dehydrogenase (asd) and glycerol-3-phosphate dehydrogenase (glpD) genes suggested the unambiguous gene order of glpD glgA glgC asd. The results of the three-factor cross glpD- glgA- glgC+ X glpD+ glgA+ glgC- were consistent with the proposed order. A simultaneous and approximately equivalent derepression of the glgC, glgA, and glgB (branching enzyme) gene products was observed in the late logarithmic-early stationary phase of growth on enriched media. These results are consistent with the coordinately regulated synthesis of the three glycogen biosynthetic enzymes in Salmonella typhimurium.  相似文献   

14.
A role for the Escherichia coli glgX gene in bacterial glycogen synthesis and/or degradation has been inferred from the sequence homology between the glgX gene and the genes encoding isoamylase-type debranching enzymes; however, experimental evidence or definition of the role of the gene has been lacking. Construction of E. coli strains with defined deletions in the glgX gene is reported here. The results show that the GlgX gene encodes an isoamylase-type debranching enzyme with high specificity for hydrolysis of chains consisting of three or four glucose residues. This specificity ensures that GlgX does not generate an extensive futile cycle during glycogen synthesis in which chains with more than four glucose residues are transferred by the branching enzyme. Disruption of glgX leads to overproduction of glycogen containing short external chains. These results suggest that the GlgX protein is predominantly involved in glycogen catabolism by selectively debranching the polysaccharide outer chains that were previously recessed by glycogen phosphorylase.  相似文献   

15.
A 6-kb DNA fragment of the Rhodobacter sphaeroides 2.4.1 glg operon was cloned from a genomic library using a polymerase chain reaction probe coding for part of the ADP-glucose pyrophosphorylase (glgC) gene. The DNA fragment was sequenced and found to harbor complete open reading frames for the glgC and glgA (glycogen synthase) genes and partial sequences corresponding to glgP (glycogen phosphorylase) and glgX (glucan hydrolase/transferase) genes. The genomic fragment also contained an apparent truncated sequence corresponding to the C-terminus of the glgB gene (branching enzyme). The presence of active branching enzyme activity in crude sonicates of Rb. sphaeroides cells indicates that the genome contains a full-length glgB at another location. The structure of this operon in relation to other glg operons is further discussed. The deduced sequence of the ADP-glucose pyrophosphorylase enzyme is compared to other known ADP-glucose pyrophosphorylase sequences and discussed in relation to the allosteric regulation of this enzyme family. The glgC gene was subcloned in the vector pSE420 (Invitrogen) for high-level expression in E. coli. The successful overexpression of the recombinant enzyme allowed for the purification of over 35 mg of protein from 10 g of cells, representing a dramatic improvement over enzyme isolation from the native strain. The recombinant enzyme was purified to near homogeneity and found to be physically, immunologically, and kinetically identical to the native enzyme, verifying the fidelity of the cloning step.  相似文献   

16.
Mycobacterium tuberculosis and other pathogenic mycobacterial species produce large amounts of a glycogen-like alpha-glucan that represents the major polysaccharide of their outermost capsular layer. To determine the role of the surface-exposed glucan in the physiology and virulence of these bacteria, orthologues of the glg genes involved in the biosynthesis of glycogen in Escherichia coli were identified in M. tuberculosis H37Rv and inactivated by allelic replacement. Biochemical analyses of the mutants and complemented strains indicated that the synthesis of glucan and glycogen involves the alpha-1,4-glucosyltransferases Rv3032 and GlgA (Rv1212c), the ADP-glucose pyrophosphorylase GlgC (Rv1213) and the branching enzyme GlgB (Rv1326c). Disruption of glgC reduced by half the glucan and glycogen contents of M. tuberculosis, whereas the inactivation of glgA and Rv3032 affected the production of capsular glucan and glycogen, respectively. Attempts to disrupt Rv3032 in the glgA mutant were unsuccessful, suggesting that a functional copy of at least one of the two alpha-1,4-glucosyltransferases is required for growth. Importantly, the glgA mutant was impaired in its ability to persist in mice, suggesting a role for the capsular glucan in the persistence phase of infection. Unexpectedly, GlgB was found to be an essential enzyme.  相似文献   

17.
The sigma S subunit of RNA polymerase is the master regulator of a regulatory network that controls stationary-phase induction as well as osmotic regulation of many genes in Escherichia coli. In an attempt to identify additional regulatory components in this network, we have isolated Tn10 insertion mutations that in trans alter the expression of osmY and other sigma S-dependent genes. One of these mutations conferred glucose sensitivity and was localized in pgi (encoding phosphoglucose isomerase). pgi::Tn10 strains exhibit increased basal levels of expression of osmY and otsBA in exponentially growing cells and reduced osmotic inducibility of these genes. A similar phenotype was also observed for pgm and galU mutants, which are deficient in phosphoglucomutase and UDP-glucose pyrophosphorylase, respectively. This indicates that the observed effects on gene expression are related to the lack of UDP-glucose (or a derivative thereof), which is common to all three mutants. Mutants deficient in UDP-galactose epimerase (galE mutants) and trehalose-6-phosphate synthase (otsA mutants) do not exhibit such an effect on gene expression, and an mdoA mutant that is deficient in the first step of the synthesis of membrane-derived oligosaccharides, shows only a partial increase in the expression of osmY. We therefore propose that the cellular content of UDP-glucose serves as an internal signal that controls expression of osmY and other sigma S-dependent genes. In addition, we demonstrate that pgi, pgm, and galU mutants contain increased levels of sigma S during steady-state growth, indicating that UDP-glucose interferes with the expression of sigma S itself.  相似文献   

18.
C Vargas  G Wu  A E Davies    J A Downie 《Journal of bacteriology》1994,176(13):4117-4123
A Tn5-induced mutant of Rhizobium leguminosarum bv. viciae could not form nitrogen-fixing nodules on pea or vetch because of a lesion in electron transport to oxygen. The mutant lacked spectroscopically detectable cytochromes c and aa3. No proteins containing c-type cytochrome could be identified in the mutant by heme staining of proteins fractionated on polyacrylamide gels, indicating that the mutant was defective in maturation of all c-type cytochromes. The Tn5 mutation was determined to be located in a gene that was called cycY. The cycY gene product is homologous to the thioredoxin-like protein HelX involved in the assembly of c-type cytochromes in Rhodobacter capsulatus and to an open reading frame from a Bradyrhizobium japonicum gene cluster containing other genes involved in cytochrome c biogenesis. Our observations are consistent with CycY functioning as a thioredoxin that reduces cysteine residues in apocytochromes c before heme attachment.  相似文献   

19.
DNA sequences that encode the tnpR genes and internal resolution (res) sites of transposons Tn21 and Tn501, and the res site and the start of the tnpR gene of Tn1721 have been determined. There is considerable homology between all three sequences. The homology between Tn21 and Tn501 extends further than that between Tn1721 and Tn501 (or Tn21), but in the homologous regions, Tn1721 is 93% homologous with Tn501, while Tn21 is only 72-73% homologous. The tnpR genes of Tn21 and Tn501 encode proteins of 186 amino acids which show homology with the tnpR gene product of Tn3 and with other enzymes that carry out site-specific recombination. However, in all three transposons, and in contrast to Tn3, the tnpR gene is transcribed towards tnpA gene, and the res site is upstream of both. The res site of Tn3 shows no obvious homology with the res regions of these three transposons. Just upstream of the tnpR gene and within the region that displays common homology between the three elements, there is a 50 bp deletion in Tn21, compared to the other two elements. A TnpR- derivative of Tn21 was complemented by Tn21, Tn501 and Tn1721, but not by Tn3.  相似文献   

20.
Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号