首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract Thermoanaerobacter thermohydrosulfuricus Rt8.B1 catabolized xylose by the pentose phosphate pathway, and xylose isomerase and xylulokinase were inducible. The uptake of xylose was by two low-affinity, inducible systems. Both systems were resistant to the protonophore, tetrachlorosalicylanilide, the F1F0-ATPase inhibitor, N , N -dicyclohexylcarboiimide, and the sodium/proton antiporter, monensin. The high capacity system (100 nmol min−1 (mg protein)−1) was only expressed when the bacterium was grown with a high concentration of xylose (50 mM). It took more than 60 mM xylose to saturate the high capacity system. When T. thermohydrosulfuricus was grown with a low concentration of xylose (5 mM), xylose uptake was saturated by as little as 10 mM xylose (18 nmol min−1 (mg protein)−1). Cells grown with 50 mM xylose could not transport glucose, and high capacity xylose transport was not inhibited by glucose or non-metabolizable glucose analogues. Cells grown with 5 mM xylose transported glucose at a rapid rate (30 nmol min−1 (mg protein)−1), and low capacity xylose uptake was competitively inhibited by either glucose or 2-deoxy-glucose. Because the glucose uptake of cells grown on 5 mM xylose was competitively inhibited by xylose, it appeared that the low capacity xylose uptake system was a glucose/xylose carrier.  相似文献   

2.
Abstract Transport of ammonium and methylamine into the cells of green sulfur bacterium Chlorobium limicola and purple sulfur bacterium Thiocapsa roseopersicina is carried out by a common transport system. This system has (for C. limicola and T. roseopersicina , respectively) pH optimum 7.0 and 7.5; V max 0.6 and 4.2 nmol min−1 (mg protein)−1; Km 5.9 × 10−5 M and 1.3 × 10−5 M, and is capable of forming 120- and 600-fold methylamine gradients. The methylamine transport can be energized by the artificially imposed transmembrane K+ diffusive potential and is inhibited by tetraphenylphosphonium or valinomycin and K+. The data presented indicate that methylamine transport in both studied species is exclusively driven by the membrane potential gradient (ΔΨ).  相似文献   

3.
Abstract— Uptake and release of glutamine were measured in primary cultures of astrocytes together with the activity of the phosphate activated glutaminase (EC 3.5.1.2). In contrast to previous findings of an effective, high affinity uptake of other amino acids (e.g. glutamate, GABA) no such uptake of glutamine was observed, though a saturable, concentrative uptake mechanism did exist (K m = 3.3 ± 0.5 m m ; V max= 50.2 ± 12.6 nmol ± min−1± mg−1). The phosphate activated glutaminase activity in the astrocytes (6.9 ± 0.9 nmol ± min−1± mg−1) was similar to the activity found in whole brain (5.4 ± 0.7 nmol ± min −l± mg−1), which may contrast with previous findings of a higher activity of the glutamine synthetase (EC 6.3.1.2) in astrocytes than in whole brain. The observations are compatible with the hypothesis of an in vivo flow of glutamate (and GABA) from neurons to astrocytes where it is taken up and metabolized, and a compensatory flow of glutamine towards neurons and away from astrocytes although the latter cell type may be more deeply involved in glutamine metabolism than envisaged in the hypothesis.  相似文献   

4.
Pyruvate Carboxylase Activity in Primary Cultures of Astrocytes and Neurons   总被引:19,自引:17,他引:2  
Abstract: The activity of the pyruvate carboxylase was determined in brains of newborn and adult mice as well as primary cultures of astrocytes, of cerebral cortex neurons, and of cerebellar granule cells. The activity was found to be 0.25 ± 0.14, 1.24 ± 0.07, and 1.75 ± 0.13 nmol · min−1· mg−1 protein in, respectively, neonatal brain, adult brain, and astrocytes. Neither of the two types of neurons showed any detectable enzyme activity (i.e., < 0.05 nmol · min−1· mg−1). It is therefore concluded that pyruvate carboxylase is an astrocytic enzyme.  相似文献   

5.
Abstract: Desulfovibrio salexigens strain Mastl was isolated from the oxic/anoxic interface of a marine sediment. Growth under sulfate-reducing conditions was accompanied by polyglucose accumulation in the cell with every substrate tested. Highest polyglucose storage was found with glucose (0.8–1.0 g polyglucose (g protein)−1), but the growth rate with this substrate was very low (0.015 h−1). Anaerobically grown cells of strain Mastl exhibited immediate oxygen-dependent respiration. The endogenous oxygen reduction rate was proportional to the polyglucose content. The rate of aerobic respiration of pyruvate was also directly related to the polyglucose content indicating that this organism was only able to respire with oxygen as long as polyglucose was present. Maximum oxygen reduction rates were found at air saturating concentrations and were relatively low (3–50 nmol O2 min−1 (mg protein)−1). Catalase was constitutively present in anaerobically grown cells. When batch cultures were exposed to oxygen, growth ceased immediately and polyglucose was oxidized to acetate within 40–50 h. Like the oxygen reduction activity, the nitro blue tetrazolium (NBT)-reduction activity in these cells was proportional to the polyglucose content. Under anaerobic starvation conditions there was no correlation between the NBT-reduction activity and polyglucose concentration and polyglucose was degraded slowly within 240 h. The ecological significance of aerobic polyglucose consumption is discussed.  相似文献   

6.
Abstract The uptake and incorporation of 75[Se]selenite by Butyrivibrio fibrisolvens and Bacteroides ruminicola were by constitutive systems. Rates of uptake were higher in chemostat culture than in batch culture and there may be some inducible component. Uptake of [75Se]selenite was distinct from sulphate or selenate transport, since sulphate and selenate did not inhibit selenite uptake, nor could sulphate or selenate uptake be demonstrated in these organisms. Selenite uptake in B. fibrisolvens had and apparent K m of 1.74 mM and a V max of 109 ng Se · min−1· (mg protein)−1. An apparent K m of 1.76 mM and V max of 1.5 μg Se · min−1· (mg protein)−1 was obtained for B. ruminicola . [75Se]Selenite uptake by both organisms was partially sensitive to inhibition by 2,4-DNP. Uptake by B. fibrisolvens was also partially inhibited by azide and arsenate and in B. ruminicola it was partially inhibited by fluoride. CCCP, CPZ, DCCD or quinine did not inhibit uptake in either B. fibrisolvens or B. ruminicola . Selenite transport by both organisms was sensitive to IAA and NEM and was strongly inhibited by sulphite and nitrite. [75Se]Selenite was converted to selenocystine, selenohomocystine and selenomethionine by B. fibrisolvens. B. ruminicola did not incorporate [75Se]selenite into organic compounds, but did reduce it to red elemental selenium.  相似文献   

7.
Dimethylsulfoxide reduction by marine sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Abstract Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurred simultaneously with sulfate reduction and was not effectively inhibited by molybdate, a specific inhibitor of sulfate reduction. The growth yield per mol lactate was 26% higher with DMSO than with sulfate as electron acceptor. In extracts of cells of strain PA2805 grown on sulfate, a low level of DMSO-reducing activity was present (0.013 μmol (mg protein) min); higher levels were found in cells grown on DMSO (0.56 μmol (mg protein) min). In anoxic marine environments DMSO reduction by sulfate-reducing bacteria may lead to enhanced dimethylsulfide emission rates.  相似文献   

8.
Polysiphonia paniculata Montagne is an intertidal red alga known to produce large amounts of the compound dimethylsulfoniopropionate (DMSP). Conversion of this substrate into dimethylsulfide is accomplished in P, paniculata by an enzyme called DMSP lyase (dimethylpropiothetin dethiomethyla.se (4.4.1.3)). DMSP lyase has been purified and characterized from P. paniculata. Enzymie activity is found in two different proteins: the larger with a molecular weight of 9.26 ± 104 daltons and the smaller with a molecular weight of 3.65 ± 104 daltons. Specific activity of the enzyme is 526 μmols min−1mg−1 for the smaller protein a nd 263 μmols min −1 mg−1 for the la rger protein. The Michaelis-Menten constant (Km) is 72.8 μM ± 17.15 and the vmax is 1.62 μmols min−1± 0.928 for the 92.6-kDa protein. The p1 of the larger protein is 5.8 and 5.9 for the smaller protein. Interaction with cysteine protease inhibitors L-trans-epoxysuccinyl-leucylamido (4-guanidino)-butane, dithiobis-(2-nitrobenzoate), or N -ethylmaleimide inactivated enzyme activity. The presence of either magnesium or calcium with DMSP lyase enhanced activity al concentrations between 20 and 40 μM but had little effect above these levels. Addition of the divalent chelators ethylenebis(oxyethylenenitrilo) tetraacetic acid and ethylenediaminetetraacetate decreased activity of the enzyme, but activity was restored when either chelator was removed and magnesium or calcium was added to the enzyme .  相似文献   

9.
Acetylcholine in plants was identified by gas chromatography/mass spectrometry. Acetylcholine was found in the following species from 13 families: Betula pendula, Codiaeum variegatum, Ilex opaca, Liquidambar styraciflua, Lonicera japonica, Phaseolus aureus, Phaseolus vulgaris, Pisum sativum, Plantago rugelli, Populus grandidentata, Prunus serotina, Rhus copallina, Smilax hispida, Viburnum dilatatum , and Zea mays . Levels of acetylcholine in leaves ranged from a low of 0.14 ± 0.05 (mean ± SEM) nmol (g fresh weight)−1 in I. opaca to a high of 53 ± 6.6 nmol (g fresh weight)−1 in P. aureus . Acetylcholine was found in all tissues examined regardless of the organ (leaves, stems, or roots) or developmental stage (seedlings, mature plants, or seeds). For P. aureus , continuous light exposure increased acetylcholine levels of leaves, and decreased levels in stem when compared to dark controls. Levels of choline, a precursor of acetylcholine, found in leaves ranged from a low of 84 ± 7.0 nmol (g fresh weight)−1 in L. styraciflua to a high of 3700 ± 200 nmol (g fresh weight)−1 in P. aureus . With these findings, three out of the four components of the cholinergic system have now been identified in plants.  相似文献   

10.
Abstract: Binding of [3H]LY278584, which has been previously shown to label 5-hydroxytryptamine3 (5-HT3) receptors in rat cortex, was studied in human brain. Saturation experiments revealed a homogeneous population of saturable binding sites in amygdala ( K D= 3.08 ± 0.67 n M, B max= 11.86 ± 1.87 fmol/mg of protein) as well as in hippocampus, caudate, and putamen. Specific binding was also high in nucleus accumbens and entorhinal cortex. Specific binding was negligible in neocortical areas. Kinetic studies conducted in human hippocampus revealed a K on of 0.025 ± 0.009 n M −1 min−1 and a K off of 0.010 ± 0.002 min−1. The kinetics of [3H]LY278584 binding were similar in the caudate. Pharmacological characterization of [3H]LY278584 specific binding in caudate and amygdala indicated the compound was binding to 5-HT3 receptors. We conclude that 5-HT3 receptors labeled by [3H]LY278584 are present in both limbic and striatal areas in human brain, suggesting that 5-HT3 receptor antagonists may be able to influence the dopamine system in humans, similarly to their effects in rodent studies.  相似文献   

11.
Even in the presence of glucose the growth of Marchantia polymorpha L. (cell line HYH-2F) requires light, and growth is more sensitive to 10−6 M 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea than to 10−4 Antimycin A. The inability of the cells to grow in the dark is due to the low level of respiration. The respiration rate under light increased to four times the dark value. The values of the compensation ratio (the photosyntehtic rate/the respiration rate) for the oxygen exchange were below 1.0 daring the growth period, although oxygen evolution was found. At the early exponential phase, oxygen evolution was 0.373 μmol (mg cell dry weight)−1 h−1 [61.7 μmol (mg chlorophyll)−1 h−1]. M. polymorpha cells are unable to grow anaerobically in the light without a supply of carbon dioxide. When 1% carbon dioxide in nitrogen is supplied, photochemically produced oxygen and energy are sufficient for sustained growth although at significantly reduced yields in both cell dry weight and chlorophyll. Photosyntehtic CO2 assimilation rate was 0.13 μmol (mg cell dry weight)−1 h−1[11.3 μmol (mg chlorophyll)−1 h−1]. At least one-third of the carbon atoms in cellular constituents seem to be derived from atmospheric carbon dioxide, which indicates that M. polymorpha cells grow photomixotrophicaily.  相似文献   

12.
Copper uptake by free and immobilized cyanobacterium   总被引:1,自引:0,他引:1  
Abstract Copper uptake in free and immobilized cells of the cyanobacterium Nostoc calcicola has been examined. The immobilized cells invariably maintained a higher profile of Cu intake rate (12.7 nmol mg−1 protein min−1) over the free cells (6.0 nmol mg−1 protein min−1). The total Cu uptake in immobilized cells was almost two and a half-times more than their free cell counterpart under identical experimental conditions. Also, the immobilized cells showed a stronger positive correlation between Cu adsorption and uptake. The results have been discussed in terms of improved metabolic efficiency of immobilized cells.  相似文献   

13.
Abstract The presence of cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylase activity in both microsomal and soluble fractions of the white rot fungus Phanerochaete chrysosporium was shown. The reduced carbon monoxide difference spectrum showed maxima at 448–450 and 452–454 nm for microsomal and cytosolic fractions, respectively. Both P-450 fractions produced a Type I substrate binding spectrum on addition of benzo(a)pyrene. Activity for benzo(a)pyrene hydroxylation was NADPH-dependent and inhibited by carbon monoxide. K m values for activity showed a difference between the cellular fractions with a K m of 89 μM for microsomal P-450 and 400 μM for cytosolic P-450. The V max values observed were 0.83 nmol min (nmol microsomal P-450) −1 and 0.4 nmol min−1 (nmol cytosolic P-450)−1. The results indicate that P-450-mediated benzo(a)pyrene hydroxylase activity could play a role in xenobiotic transformation by this fungus beside the known ligninolytic exocellular enzymes.  相似文献   

14.
Abstract: (RS)-Nipecotic acid is taken up into cultured astrocytes by a saturable high-affinity transport system with a Km, of 28.8 ± 2.8 μM and a Vmax of 0.294 ± 0.022 nmol × min−1× [mg cell protein]−1. The uptake which represents a net inward transport was sodium-dependent, requiring translocation of one sodium ion for each molecule of nipecotic acid taken up. The most potent inhibitors of GABA uptake into astrocytes (GABA, (R)-nipecotic acid, (3RS,4SR)-4-hydroxynipecotic acid, and guvacine) were shown to be potent inhibitors of nipecotic acid uptake (IC50) 20, 25, 25, and 50 μm respectively), GABA being a competitive inhibitor. (S)-2,4-Diaminobutyric acid was a more efficient inhibitor than β-alanine of glial uptake of (RS)-nipecotic acid. It is concluded that astroglial uptake of (RS)-nipecotic acid and GABA is mediated by the same transport system.  相似文献   

15.
Abstract The filamentous fungus Cunninghamella elegans has the ability to metabolize xenobiotics, including polycyclic aromatic hydrocarbons and pharmaceutical drugs, by both phase I and II biotransformations. Cytosolic and microsomal fractions were assayed for activities of cytochrome P450 monooxygenase, aryl sulfotransferase, glutathione S -transferase, UDP-glucuronosyltransferase, UDP-glucosyltransferase, and N -acetyltransferase. The cytosolic preparations contained activities of an aryl sulfotransferase (15.0 nmol min−1 mg−1), UDP-glucosyltransferase (0.27 nmol min−1 mg−1) and glutathione 5-transferase (20.8 nmol min−1 mg−1). In contrast, the microsomal preparations contained cytochrome P450 monooxygenase activities for aromatic hydroxylation (0.15 nmol min−1 mg−1) and N -demethylation (0.17 nmol min−1~' mg−1) of cyclobenzaprine. UDP-glucuronosyltransferase activity was detected in both the cytosol (0.09 nmol min−1 mg−1) and the microsomes (0.13 nmol min−1 mg−1). N -Acetyltransferase was not detected. The results from these experiments provide enzymatic mechanism data to support earlier studies and further indicate that C. elegans has a broad physiological versatility in the metabolism of xenobiotics.  相似文献   

16.
The rate of oxygen evolution of the tropical red alga Kappaphycus alvarezii (Doty) Doty was measured for 6 days in the laboratory using a computer-aided method for long-term recording. In cool white light, Kappaphycus exhibited a robust circadian rhythm of O2 evolution in the irradiance range of 100 to 1000 μmol photons·m 2·s 1. With increasing irradiance, the period of the free-running rhythm, τ, decreased in blue and increased in red light but did not change significantly in green light. The accelerating or slowing action of blue or red light, respectively, points to two photoreceptors used in the light transduction pathway of the circadian oscillator controlling oxygen evolution or the light reactions of photosynthesis in Kappaphycus. No significant changes of τ were observed with increasing irradiance in cool white light, possibly due to the additive opposing responses caused by blue and red light.  相似文献   

17.
The effects of stress on plasma catecholamines (CA) and capacity for tissue accumulation of CA were studied in cardiac and skeletal muscle of cultured Atlantic salmon ( Salmo salar L.). Adrenaline (A) and noradrenaline (NA) were quantified by high performance liquid chromatography.
Plasma A and NA levels were 56±10 nmoll−1 and 77±17 nmoll−1 (± s.e.m. ), respectively, in a control group living under normal rearing conditions in a fish farm. Following a ±3 h period of pre-slaughter crowding and handling in the fish farm, plasma A reached 221 ± 72 nmol1−1 with no increase in plasma NA. An 0.5 h period of struggling out of water led to even higher level of plasma A (480 ± 89 nmol1−1), without change in NA.
Skeletal muscle was low in CA (A, 0.07 ± 0.02 and NA, 0.06 ± 0.01 nmol g−1 wet wt). Tissue CA was higher in the atrium (A, 0.47 ± 0.04 and NA 0.94 ± 0.10 nmol g−1) than in the ventricle (A, 0.25 ± 0.03 and NA, 0.30 ± 0.02 nmol g−1). The 0.5 h period out of water and the 0.5-3 h period of pre-slaughter crowding led to accumulation of A, but not NA, in the atrium.
These data show that A, released during stress, accumulates in an undegraded form in the atrial tissue of the Atlantic salmon. This suggests a potent uptake mechanism for A in the atria presumably in the sympathetic nerve terminals. The acumulation of A in the atrium appears to reflect the period of high plasma A during stress.  相似文献   

18.
Abstract The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h anoxic regime. After 11 volume changes at a dilution rate of 0.031 h−1 (35% of μmax) a time dependent equilibrium was established. During the 23 h oxic periods bacteriochlorophyll a synthesis (BChl a ) was not observed, whereas during the 1 h anoxic periods synthesis was maximal (i.e. 1.1 μg (mg protein)−1 h−1). As a result the BChl a concentration gradually increased from zero to an average value over 24 h of 1.9 μg (mg protein)−1. Concomitantly, the protein concentration increased from 13.9 mg 1−1 during continuous oxic conditions to 28.8 mg 1−1. For comparison, the protein concentration during fully phototrophic growth at an identical thiosulfate concentration in the inflowing medium was 53.7 mg 1−1. The specific respiration rate was 8 μmol O2 (mg protein)−1 h−1 during full chemotrophic growth and gradually decreased to 3.5 μmol O2 (mg protein)−1 h−1 after 11 volume changes at the regime employed. These data show that T. rosepersicina is able to simultaneously utilize light and aerobic respiration of thiosulfate as sources of energy. The ecological relevance of the data is discussed.  相似文献   

19.
Abstract A new transport system for the uptake of l-glutamate was characterized in Corynebacterium glutamicum strain Δ glu, in which the previously described binding protein-dependent glutamate uptake system is not present. Kinetic characterization revealed a highly specific secondary transport system, dependent on sodium ions. Glutamate uptake showed Michaelis-Menten kinetics, with a K m of 0.6 mM and a V max of 15 nmol min−1 (mg dw)−1. For the co-transported sodium ions, a relatively low K m of 3.3 mM was determined.  相似文献   

20.
γ-Glutamyl-transpeptidase activity (EC 2.3.2.2) was found in ammonium sulfate precipitates of extracts from cultured cells of Nicotiana tabacum L. var. Samsun. Specific activity up to 3.2 nmol (mg protein)−1 min−1 was achieved, using the artificial substrate γ-glutamyl- p -nitroanilide (Km 0.6 m M ) instead of glutathione. Optimal enzyme activity was obtained at pH 8.0–8.5 and 45°C. The enzyme reaction was inhibited competitively by γ-glutamyl analogs (6-diazo-5-oxo-L-norleucine: Ki 0.76 μ M ; L-azaserine: Ki 0.23 m M ) or the inorganic ion m -periodate (Ki 0.43 m M ). Cell fractionation and in vivo experiments revealed that 77% of the γ-glutamyl-transpeptidase activity is localized in the soluble cytoplasmic fraction, while 20–23% of the enzyme is found on the outer surface of the plasmalemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号