首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of NADP-linked malic enzyme, hexose monophosphate shunt dehydrogenases and NADP-linked isocitrate dehydrogenase were studied during development of skeletal muscle and compared with those in the liver. The variation patterns of malic enzyme activity in the liver and in the skeletal muscle were very similar, however the amplitude of the changes was different. The enzyme activity increased approx 16-fold in the liver and about 2-fold in skeletal muscle at the same stage of development. In skeletal muscle the increase of the malic enzyme activity was only slightly higher than of lactic dehydrogenase and citrate synthase. Studies on the intracellular distribution of malic enzyme in skeletal muscle showed that both mitochondrial and extramitochondrial enzymes increased between 20th and 37th day of life, the increase of the extramitochondrial enzyme being more pronounced. The hexose monophosphate shunt dehydrogenases activity showed an increase in the liver but no change was observed in the skeletal muscle at the weaning time. Changes in the activity of the liver and skeletal muscle isocitrate dehydrogenase were not significant between 10th and 80th day of life. The results suggest that the malic enzyme in the liver is playing a different physiological role than in the skeletal muscle.  相似文献   

2.
Administration of clofibrate for 21 days to rats increased the malic enzyme activity in the kidney cortex by about 80 per cent. This effect seems to be specific since the drug did not alter significantly the activity either of lactate dehydrogenase, citrate synthase or total mitochondrial protein content in this organ. The increase in activity of malic enzyme in the 13,000 g supernatant (extramitochondrial) fraction in rats treated with the drug was about 80 per cent, whereas in the pellet (mitochondrial fraction) it was about 40 per cent. The specific activity of malic enzyme in the kidney cortex cytosol from clofibrate-treated rats was about twice that in controls. In contrast clofibrate treatment did not affect its specific activity in isolated mitochondria. Calculations showed that 0.57 and 0.53 mumoles min-1 g-1 wet tissue of mitochondrial malic enzyme was obtained in control and clofibrate-treated rats respectively. Thus, clofibrate feeding increases the amount of cytoplasmic but not mitochondrial malic enzyme activity.  相似文献   

3.
Significant changes occurred in the activities of enzymes in silicotic rat lung at 30, 90 and 150 days after intratracheal injection of quartz dust. The pattern of changes indicated that the mitochondrial metabolism in silicosis is altered significantly indicating disturbances in bioenergetics. Increase in activity of cytochrome-c-oxidase and NADH-cytochrome-c-reductase at the early stage and a significant decline at the advanced stage of the disease suggest that metabolic changes in silicosis during the initial and the advanced stage of the disease are distinctly different. Besides, enhanced rate of glycolysis is also observed at the early stages of silicosis.  相似文献   

4.
Summary Pre-natal changes in the physiological development of the porcine conceptus indexed by acetylcholinesterase (AChE) activity and total protein content of the fetal brain and amniotic fluid were determined from 4 to 12 weeks of gestation at intervals of two weeks. Marked brain and body development was observed between four and six weeks of gestation. AChE activity in the amniotic fluid declined non-significantly with gestation length while fetal brain AChE activity increased with advancing gestation. Total protein levels in both the amniotic fluid and fetal brain were relatively steady and no significant changes were observed. Changes in AChE activity of the fetal brain may therefore be related to growth changes in the fetus.  相似文献   

5.
6.
The levels of S-100 protein (S-100) and neuron-specific enolase (NSE) in the developing rat brain were determined by a sensitive enzyme immunoassay and the results were compared with those obtained by other methods. Changes with development in the levels of S-100, NSE, and 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase), biochemical markers for astroglia, neurons and oligodendroglia respectively, were determined in various brain regions including the cerebral hemisphere (CH), brain stem (BS) and cerebellum (Ce). The peak increments of S-100, NSE, and CNPase activity were reached later than that of the brain weight in all of the regions. The ratios of S-100/NSE and CNPase/NSE rose during the 21 days after birth in the CH and BS; the S-100/NSE ratio in the CH began to decrease from the 21st day, whereas the CNPase/NSE ratio continued to rise even after the 30th day, suggesting different maturation periods of the different glial cells. In the Ce, the change of these ratios showed a pattern different from those in the other regions. In the CH of rats with experimental microencephaly induced by methylazoxymethanol (MAM), the ratios were almost normal, in spite of the reduction of the brain weight to about 50% of the control.Dedicated to Professor Yasuzo Tsukada.  相似文献   

7.
The half-lives of hepatic malic enzyme and total liver soluble proteins were determined in protein-sufficient and protein-deficient rats after injection of tracer doses of radioactively labeled leucine. The results obtained in these experiments have demonstrated that the increased levels of malic enzyme obtained under conditions of severe protein restriction are due to elevated rates of synthesis of the enzyme protein, with no apparent change in the rate of its degradation.  相似文献   

8.
Malate has a number of key roles in the brain, including its function as a tricarboxylic acid (TCA) cycle intermediate, and as a participant in the malate-aspartate shuttle. In addition, malate is converted to pyruvate and CO2 via malic enzyme and may participate in metabolic trafficking between astrocytes and neurons. We have previously demonstrated that malate is metabolized in at least two compartments of TCA cycle activity in astrocytes. Since malic enzyme contributes to the overall regulation of malate metabolism, we determined the activity and kinetics of the mitochondrial and cytosolic forms of this enzyme from cultured astrocytes. Malic enzyme activity measured at 37°C in the presence of 0.5 mM malate was 4.15±0.47 and 11.61±0.98 nmol/min/mg protein, in mitochondria and cytosol, respectively (mean±SEM, n=18–19). Malic enzyme activity was also measured in the presence of several endogenous compounds, which have been shown to alter intracellular malate metabolism in astrocytes, to determine if these compounds affected malic enzyme activity. Lactate inhibited cytosolic malic enzyme by a noncompetitive mechanism, but had no effect on the mitochondrial enzyme. -Ketoglutarate inhibited both cytosolic and mitochondrial malic enzymes by a partial noncompetitive mechanism. Citrate inhibited cytosolic malic enzyme competitively and inhibited mitochondrial malic enzyme noncompetitively at low concentrations of malate, but competitively at high concentrations of malate. Both glutamate and aspartate decreased the activity of mitochondrial malic enzyme, but also increased the affinity of the enzyme for malate. The results demonstrate that mitochondrial and cytosolic malic enzymes have different kinetic parameters and are regulated differently by endogenous compounds previously shown to alter malate metabolism in astrocytes. We propose that malic enzyme in brain has an important role in the complete oxidation of anaplerotic compounds for energy.These data were presented in part at the meeting of the American Society for Neurochemistry in Richmond, Virginia, March 1993  相似文献   

9.
Using techniques of microdissection and microassay as well as qualitative histochemistry the activity and intra-acinar distribution of G6PDH and ME were studied on selected days of pregnancy in the rat. Both enzymes show distinct fluctuations during the course of pregnancy in keeping with changes in hepatic lipogenesis. Marked increases in activity are seen as early as the 4th day, while highest values are attained on day 20, with a predominant perivenous induction. On day 22, just before parturition a sharp decrease of both enzyme activities with a flattening of the periportal/perivenous gradient was detected. G6PDH shows proportionally considerably larger increases and more distinct changes in zonation. The perivenous fluctuations in G6PDH activity of late gestation are supposed to be caused primarily by insulin. Although estrogen is known to induce both enzymes, the temporal changes in enzyme activity in pregnancy cannot be related to the action of estrogen alone. The changes in enzyme activity, however, correspond well to those of progesterone, and although no direct action of progesterone on these enzymes has yet been proposed, further work on its effects on enzyme activity and distribution is indicated.  相似文献   

10.
Summary Using techniques of microdissection and microassay as well as qualitative histochemistry the activity and intra-acinar distribution of G6PDH and ME were studied on selected days of pregnancy in the rat. Both enzymes show distinct fluctuations during the course of pregnancy in keeping with changes in hepatic lipogenesis. Marked increases in activity are seen as early as the 4th day, while highest values are attained on day 20, with a predominant perivenous induction. On day 22, just before parturition a sharp decrease of both enzyme activities with a flattening of the periportal/perivenous gradient was detected. G6PDH shows proportionally considerably larger increases and more distinct changes in zonation. The perivenous fluctuations in G6PDH activity of late gestation are supposed to be caused primarily by insulin. Although estrogen is known to induce both enzymes, the temporal changes in enzyme activity in pregnancy cannot be related to the action of estrogen alone. The changes in enzyme activity, however, correspond well to those of progesterone, and although no direct action of progesterone on these enzymes has yet been proposed, further work on its effects on enzyme activity and distribution is indicated.  相似文献   

11.
12.
13.
14.
Protein-degradation rates in developing rat brain were estimated from the decay in total radioactivity in proteins labelled by a single intraperitoneal injection of NaH14CO3 to 5-day-old animals. In contrast with previous reports, our results indicate that degradation rates are lower in developing than in adult brain and suggest that in brain, as has been observed in liver, adrenal gland, muscle, cultured mammalian cells and bacteria, reduced rates of protein degradation contribute to the increase in protein content under conditions of rapid growth.  相似文献   

15.
The glycerophospholipid (GPL) content and acyl group compositions of isolated brain endothelial fractions have been determined in the developing rat. During development there is a marked change in proportions of ethanolamine glycerophospholipids (EGP) to choline glycerophospholipids (CGP), the former rising while CGP falls with age. The acyl group compositions of plasmenylethanolamine (P-GPE) and 1,2-diacyl-sn-glycero-3-phosphocholine (D-GPC) alter significantly during development; both show a decline in saturated fatty acids (SFAs) and a rise in then-6/SFA ratio, in contrast to a constancy in composition of 1,2-diacyl-sn-glycero-3-phosphoethanolamine (D-GPE). The degree of change in the acyl group composition in a particular GPL fraction is related to the rate of its accumulation and to the proportional increase in concentration, fractions accumulating most rapidly or increasing markedly in concentration showing the greatest acyl group compositional change. The possible significance of the high proportion of SFAs in P-GPE and D-GPC fractions in the developing brain endothelial fraction is discussed in relation to the altering blood-brain barrier capacities observed with age.  相似文献   

16.
There is a good correlation between changes in malic enzyme activity and immunoreactive protein in both hepatic and brown adipose tissue during postnatal development of the rat. Furthermore, the previously observed premature appearance of hepatic malic enzyme during the suckling period, in response to triiodothyronine, can also be achieved through dichloroacetate administration. A combination of triiodothyronine and dichloroacetate induces malic enzyme activity and immunoreactive protein in a synergistic manner, indicating different sites of action in the control of synthesis of hepatic malic enzyme although neither agent was found to affect the level of malic enzyme in brown adipose tissue. There is evidence to suggest that changes in the ability of the liver to express malic enzyme in response to triiodothyronine administration occur early in postnatal life.  相似文献   

17.
A specific enzyme assay for aminopeptidase M (APM) activity on rat brain membranes has been developed through selective use of enzyme inhibitors. Amastatin was the most potent inhibitor (amastatin > actinonin > MDL73347 > bestatin) for purified porcine kidney APM, giving 98% inhibition at a 6 microM concentration, while actinonin, yielded only 57% inhibition at this concentration. Puromycin (10 microM) was used to inhibit puromycin-sensitive aminopeptidase activity in the rat brain membrane preparation. Puromycin (10 microM) had only a slight effect on the Km of porcine kidney APM, and had negligible effect on APM velocity at the high substrate concentration (2 mM) used in the APM assay. The assay produced a linear accumulation of product for increasing amount of rat brain membranes used, and for increasing incubation time. The Km of APM on rat brain membranes for L-Leucine-p-nitroanilide (0.383 mM) was similar to the Km of purified porcine kidney APM (0.558 mM). APM-activity, involved in the metabolism of several biologically important neuropeptides in different brain regions, can be specifically measured with this enzyme assay.  相似文献   

18.
19.
Studies have been made on the content of DNA in the mitochondria from the brain of 1, 5, 10, 15, 21, 60, and 400 days old rats. Isolated DNA preparations contained 7% of RNA and 3% of proteins. It was shown that the amount of DNA in 21- and 60-day rats is 4 times higher that than in newborn ones. DNA content of the mitochondria increases during the first 3 weeks of postnatal life of rats.  相似文献   

20.
M Buckle  F Guerrieri  S Papa 《FEBS letters》1985,188(2):345-351
Submitochondrial particles prepared from rat liver during hepatic regeneration exhibit a depressed ATPase activity which is correlated with a decrease in F1 subunit content as shown by SDS-PAGE. Use of an antibody directed against the F1 portion of the H+-ATPase complex demonstrated that there is a definite decrease in the amount of beta-subunit of F1 in both submitochondrial particles and mitochondria from rat liver 24 h after partial hepatectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号