首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotype-based identification of mouse chromosome instability mutants   总被引:1,自引:0,他引:1  
There is increasing evidence that defects in DNA double-strand-break (DSB) repair can cause chromosome instability, which may result in cancer. To identify novel DSB repair genes in mice, we performed a phenotype-driven mutagenesis screen for chromosome instability mutants using a flow cytometric peripheral blood micronucleus assay. Micronucleus levels were used as a quantitative indicator of chromosome damage in vivo. Among offspring derived from males mutagenized with the germline mutagen N-ethyl-N-nitrosourea (ENU), we identified a recessive mutation conferring elevated levels of spontaneous and radiation- or mitomycin C-induced micronuclei. This mutation, named chaos1 (chromosome aberration occurring spontaneously 1), was genetically mapped to a 1.3-Mb interval on chromosome 16 containing Polq, encoding DNA polymerase theta. We identified a nonconservative mutation in the ENU-derived allele, making it a strong candidate for chaos1. POLQ is homologous to Drosophila MUS308, which is essential for normal DNA interstrand crosslink repair and is unique in that it contains both a helicase and a DNA polymerase domain. While cancer susceptibility of chaos1 mutant mice is still under investigation, these data provide a practical paradigm for using a forward genetic approach to discover new potential cancer susceptibility genes using the surrogate biomarker of chromosome instability as a screen.  相似文献   

2.
In the mouse, random mutagenesis with N-ethyl-N-nitrosourea (ENU) has been used since the 1970s in forward mutagenesis screens. However, only in the last decade has ENU mutagenesis been harnessed to generate a myriad of new mouse mutations in large-scale genetic screens and focused, smaller efforts. The development of additional genetic tools, such as balancer chromosomes, refinements in genetic mapping strategies, and evolution of specialized assays, has allowed these screens to achieve new levels of sophistication. The impressive productivity of these screens has led to a deluge of mouse mutants that wait to be harnessed. Here the basic large- and small-scale strategies are described, as are the basics of screen design. Finally, and importantly, this review describes the mechanisms by which such mutants may be accessed now and in the future. Thus, this review should serve both as an overview of the power of forward mutagenesis in the mouse and as a resource for those interested in developing their own screens, adding onto existing efforts, or obtaining specific mouse mutants that have already been generated.  相似文献   

3.
In the mouse, random mutagenesis with N-ethyl-N-nitrosourea (ENU) has been used since the 1970s in forward mutagenesis screens. However, only in the last decade has ENU mutagenesis been harnessed to generate a myriad of new mouse mutations in large-scale genetic screens and focused, smaller efforts. The development of additional genetic tools, such as balancer chromosomes, refinements in genetic mapping strategies, and evolution of specialized assays, has allowed these screens to achieve new levels of sophistication. The impressive productivity of these screens has led to a deluge of mouse mutants that wait to be harnessed. Here the basic large- and small-scale strategies are described, as are the basics of screen design. Finally, and importantly, this review describes the mechanisms by which such mutants may be accessed now and in the future. Thus, this review should serve both as an overview of the power of forward mutagenesis in the mouse and as a resource for those interested in developing their own screens, adding onto existing efforts, or obtaining specific mouse mutants that have already been generated.  相似文献   

4.
More than 150 million people suffer from diabetes mellitus worldwide, and this number is expected to rise substantially within the next decades. Despite its high prevalence, the pathogenesis of diabetes mellitus is not completely understood. Therefore, appropriate experimental models are essential tools to gain more insight into the genetics and pathogenesis of the disease. Here, we describe the current efforts to establish novel diabetes models derived from unbiased, phenotype-driven, large-scale N-ethyl-N-nitrosourea (ENU) mouse mutagenesis projects started a decade ago using hyperglycemia as a high-throughput screen parameter. Mouse lines were established according to their hyperglycemia phenotype over several generations, thereby revealing a mutation as cause for the aberrant phenotype. Chromosomal assignment of the causative mutation and subsequent candidate gene analysis led to the detection of the mutations that resulted in novel alleles of genes already known to be involved in glucose homeostasis, like glucokinase, insulin 2, and insulin receptor. Additional ENU-induced hyperglycemia lines are under genetic analysis. Improvements in screen for diabetic animals are implemented to detect more subtle phenotypes. Moreover, diet challenge assays are being employed to uncover interactions between genetic and environmental factors in the pathogenesis of diabetes mellitus. The new mouse mutants recovered in phenotype-driven ENU mouse mutagenesis projects complement the available models generated by targeted mutagenesis of candidate genes, all together providing the large resource of models required for a systematic dissection of the pathogenesis of diabetes mellitus.  相似文献   

5.
Mutants sensitive to ionizing radiation in yeast and mammals include an assortment of DNA repair genes. The majority of these DNA repair genes are involved in the repair of DNA double-strand breaks. In this study a forward genetic screen is used to identify gamma-sensitive mutants of Arabidopsis thaliana. The gamma-plantlet screen used here also reveals two general mutant classes based on size of cotyledons and hypocotyls. One of the mutants discovered is a homologue of the mammalian nucleotide excision repair gene ERCC1.  相似文献   

6.
A genetic screen has been developed in Drosophila for identifying host-repair genes responsible for processing DNA lesions formed during mobilization of P transposable elements. Application of that approach to repair deficient mutants has revealed that the mei-41 and mus302 genes are necessary for recovery of P-bearing chromosomes undergoing transposition. Both of these genes are required for normal postreplication repair. Mutants deficient in excision repair, on the other hand, have no detected effect on the repair of transposition-induced lesions. These observations suggest that P element-induced lesions are repaired by a postreplication pathway of DNA repair. The data further support recent studies implicating double-strand DNA breaks as intermediates in P transposition, because the mei-41 gene has been genetically and cytologically associated with the repair of interrupted chromosomes. Analysis of this system has also revealed a striking stimulation of site-specific gene conversion and recombination by P transposition. This result strongly suggests that postreplication repair in this model eukaryote operates through a conversion/recombination mechanism. Our results also support a recently developed model for a conversion-like mechanism of P transposition (Engels et al., 1990). Involvement of the mei-41 and mus302 genes in the repair of P element-induced double-strand breaks and postreplication repair points to a commonality in the mechanisms of these processes.  相似文献   

7.
Systematic approaches to mouse mutagenesis will be vital for future studies of gene function. We have begun a major ENU mutagenesis program incorporating a large genome-wide screen for dominant mutations. Progeny of ENU-mutagenized mice are screened for visible defects at birth and weaning, and at 5 weeks of age by using a systematic and semi-quantitative screening protocol—SHIRPA. Following this, mice are screened for abnormal locomotor activity and for deficits in prepulse inhibition of the acoustic startle response. Moreover, in the primary screen, blood is collected from mice and subjected to a comprehensive clinical biochemical analysis. Subsequently, secondary and tertiary screens of increasing complexity can be used on animals demonstrating deficits in the primary screen. Frozen sperm is archived from all the male mice passing through the screen. In addition, tail tips are stored for DNA. Overall, the program will provide an extensive new resource of mutant and phenotype data to the mouse and human genetics communities at large. The challenge now is to employ the expanding mouse mutant resource to improve the mutant map of the mouse. An improved mutant map of the mouse will be an important asset in exploiting the growing gene map of the mouse and assisting with the identification of genes underlying novel mutations—with consequent benefits for the analysis of gene function and the identification of novel pathways. Received: 16 December 1999 / Accepted: 16 December 1999  相似文献   

8.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease such as simple steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis and fibrosis. However, the molecular pathogenesis and genetic variations causing NAFLD are poorly understood. The high prevalence and incidence of NAFLD suggests that genetic variations on a large number of genes might be involved in NAFLD. To identify genetic variants causing inherited liver disease, we used zebrafish as a model system for a large-scale mutant screen, and adopted a whole genome sequencing approach for rapid identification of mutated genes found in our screen. Here, we report on a forward genetic screen of ENU mutagenized zebrafish. From 250 F2 lines of ENU mutagenized zebrafish during post-developmental stages (5 to 8 days post fertilization), we identified 19 unique mutant zebrafish lines displaying visual evidence of hepatomegaly and/or steatosis with no developmental defects. Histological analysis of mutants revealed several specific phenotypes, including common steatosis, micro/macrovesicular steatosis, hepatomegaly, ballooning, and acute hepatocellular necrosis. This work has identified multiple post-developmental mutants and establishes zebrafish as a novel animal model for post-developmental inherited liver disease.  相似文献   

9.
The worldwide effort to completely sequence the human and mouse genome will be accomplished within the next years. The focus of current activities within the framework of human genome research is mainly on the assembly of high resolution genetic and physical maps and genomic sequencing. Cloning of new genes is getting more easy using those maps. Nevertheless, it is necessary to work on a systematic analysis of gene function. Results obtained from these efforts will be of enormous value for future biological and biomedical research. However, even the complete sequence will not in all cases reveal the molecular and cellular role of the different genes. Therefore, the next phase of the Human Genome Project will have at its core the functional analysis of genes. Those genes relevant for the diagnosis, prevention and therapy of human diseases are of particular interest. Looking at the history of life sciences, mutants have been the most important tool to obtain insight into the biological function of genes. The mouse is the model of choice for the study of inherited diseases in man. In order to meet the requirements for functional human genome analysis, we need a large number of mouse mutants similar to the collection of mutants available for other model organisms such as flys and worms. To fully apply the power of genetics, multiple alleles of the same gene such as hypomorphs or hypermorphs are required. Efficient production of mouse mutants showing specific phenotypes can be achieved by the use of ethylnitrosourea (ENU). ENU is the most powerful mutagen known and we currently see a renaissance of ENU mutagenesis. The application of ENU mutagenesis is reviewed and discussed in the context of a new era of functional genomics.  相似文献   

10.
11.
Mouse models are one of the major tools used for discovery and characterization of genes for non-syndromic deafness in humans. The similarities between the mouse and human genomes, and between the physiology and morphology of their auditory systems, are striking. This article describes the latest mouse models, including spontaneous, 'knockout' and ENU (N-ethyl-N-nitrosourea)-induced mutants, and the recent discovery of modifier genes that are involved in mouse deafness; this discovery is leading the search for genetic modifiers for human disorders.  相似文献   

12.
The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains.  相似文献   

13.
To check the possibilities of the recently developed comet assay, to be used in mechanistic studies in Drosophila melanogaster, neuroblast cells of third instar larvae are used to analyse in vivo, the effect of two repair deficient mutations: mus201, deficient on nucleotide excision repair, and mus308, deficient in a mechanism of damage bypass, on the genotoxicity of methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS) and N-ethyl-N-nitrosourea (ENU). The obtained results reveal: (1) MMS-induced breaks are most probably consequence of N-alkylation damage mediated abasic (AP) site breakage; (2) MMS and at least part of the EMS induced damage leading to DNA strand breaks are efficiently repaired by the nucleotide excision repair mechanism; (3) ENU and part of EMS induced damage need a functional Mus308 protein to be processed, otherwise they can lead to DNA strand breaks. In addition, the results of this work confirm the validity of neuroblast cells to conduct the comet assay, and the usefulness of this assay in in vivo mechanistic studies related to DNA repair in D. melanogaster.  相似文献   

14.
The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes.  相似文献   

15.
Radiotherapy can cause unacceptable levels of damage to normal tissues in some cancer patients. To understand the molecular mechanisms underlying radiation-induced physiological responses, and to be able to predict the radiation susceptibility of normal tissues in individual patients, it is important to identify a comprehensive set of genes responsible for radiation susceptibility. We have developed a simple and rapid 96-well screening protocol using cell proliferation assays and RNA interference to identify genes associated with radiation susceptibility. We evaluated the performance of alamarBlue-, BrdU-, and sulforhodamine B-based cell proliferation assays using the 96-well format. Each proliferation assay detected the known radiation susceptibility gene, PRKDC. In a trial screen using 28 shRNA vectors, another known gene, CDKN1A, and one new radiation susceptibility gene, ATP5G3, were identified. Our results indicate that this method may be useful for large-scale screens designed to identify novel radiation susceptibility genes.  相似文献   

16.
N-ethyl-N-nitrosourea (ENU) mutagenesis screens have been successful for identifying genes that affect important biological processes and diseases. However, for heart-related phenotypes, these screens have been employed exclusively for developmental phenotypes, and to date no adult cardiomyopathy-causing genes have been discovered through a mutagenesis screen. To identify novel disease-causing and disease-modifying genes for cardiomyopathy, we performed an ENU recessive mutagenesis screen in adult mice. Using noninvasive echocardiography to screen for abnormalities in cardiac function, we identified a heritable cardiomyopathic phenotype in two families. To identify the chromosomal regions where the mutations are localized, we used a single nucleotide polymorphism (SNP) panel for genetic mapping of mouse mutations. This panel provided whole-genome linkage information and identified the mutagenized candidate regions at the proximal end of chromosome 1 (family EN1), and at the distal end of chromosome 15 (family EN25). We have identified 94 affected mice in family EN1 and have narrowed the candidate interval to 1 Mb. We have identified 20 affected mice in family EN25 and have narrowed the candidate interval to 12 Mb. The identification of the genes responsible for the observed phenotype in these families will be strong candidates for disease-causing or disease-modifying genes in patients with heart failure. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
It has previously been shown that the frequency of pilin antigenic variation in Neisseria gonorrhoeae (the gonococcus, Gc) is regulated by iron availability. To identify factors involved in pilin variation in an iron-dependent or an iron-independent manner, we conducted a genetic screen of transposon-mutated gonococci using a pilus-dependent colony morphology phenotype to detect antigenic variation deficient mutants. Forty-six total mutants representing insertions in 30 different genes were shown to have reduced colony morphology changes resulting from impaired pilin variation. Five mutants exhibited an iron-dependent decrease in pilin variation, while the remaining 41 displayed an iron-independent decrease in pilin variation. Based on the levels of antigenic variation impairment, we defined the genes as being essential for, important for, or involved in antigenic variation. DNA repair and DNA transformation frequencies of each mutant were measured to determine whether other recombination-based processes were also affected in the mutants. Each mutant was placed into one of six classes based on their pilin variation, DNA repair and DNA transformation phenotypes. Among the many genes identified, recR is shown to be an additional member of the gonococcal RecF-like recombination pathway. In addition, recG and ruvA represent the first evidence that the processing of Holliday junctions is required for pilin antigenic variation. Moreover, two independent insertions in a non-coding region upstream of the pilE gene suggest that cis-acting sequences important for pilin variation are found in that region. Finally, insertions that effect expression of the thrB and thrC genes suggest that molecules in the threonine biosynthetic pathway are important for pilin variation. Many of the other genes identified in this genetic screen do not have an obvious role in pilin variation, DNA repair, or DNA transformation.  相似文献   

18.
The piebald deletion complex is a set of overlapping chromosomal deficiencies on distal mouse chromosome 14. We surveyed the functional genetic content of the piebald deletion region in an essential gene mutagenesis screen of 952 genomes to recover seven lethal mutants. The ENU‐induced mutations were mapped to define genetic intervals using the piebald deletion panel. Lethal mutations included loci required for establishment of the left‐right embryonic axis and a loss‐of‐function allele of Phr1 resulting in respiratory distress at birth. A functional map of the piebald region integrates experimental genetic data from the deletion panel, mutagenesis screen, and the targeted disruption of specific genes. A comparison of several genomic intervals targeted in regional mutagenesis screens suggests that the piebald region is characterized by a low gene density and high essential gene density with a distinct genomic content and organization that supports complex regulatory interactions and promotes evolutionary stability. genesis 47:392–403, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
We screened populations of N-ethyl-N-nitrosourea (ENU)-mutagenized Medaka, (Oryzias latipes) for radiation-sensitive mutants to investigate the mechanism of genome stability induced by ionizing radiation in developing embryos. F3 embryos derived from male founders that were homozygous for induced the mutations were irradiated with gamma-rays at the organogenesis stage (48hpf) at a dose that did not cause malformation in wild-type embryos. We screened 2130 F2 pairs and identified three types of mutants with high incidence of radiation-induced curly tailed (ric) malformations using a low dose of irradiation. The homozygous strain from one of these mutants, ric1, which is highly fertile and easy to breed, was established and characterized related to gamma-irradiation response. The ric1 strain also showed higher incidence of malformation and lower hatchability compared to the wild-type CAB strain after gamma-irradiation at the morula and pre-early gastrula stages. We found that the decrease in hatching success after gamma-irradiation, depends on the maternal genotype at the ric1 locus. Terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end-labeling assays showed a high frequency of apoptosis in the ric1 embryos immediately after gamma-irradiation at the pre-early gastrula stage but apoptotic cells were not observed before midblastula transition (MBT). The neutral comet assay revealed that the ric1 mutant has a defect in the rapid repair of DNA double-strand breaks induced by gamma-rays. These results suggest that RIC1 is involved in the DNA double strand break repair in embryos from morula to organogenesis stages, and unrepaired DNA double strand breaks in ric1 trigger apoptosis after MBT. These results support the use of the ric1 strain for investigating various biological consequences of DNA double strand breaks in vivo and for sensitive monitoring of genotoxicity related to low dose radiation.  相似文献   

20.
The control of growth, patterning, and differentiation of the mammalian forebrain has a large genetic component, and many human disease loci associated with cortical malformations have been identified. To further understand the genes involved in controlling neural development, we have performed a forward genetic screen in the mouse (Mus musculus) using ENU mutagenesis. We report the results from our ENU screen in which we biased our ascertainment toward mutations affecting neurodevelopment. Our screen had three components: a careful morphological and histological examination of forebrain structure, the inclusion of a retinoic acid response element-lacZ reporter transgene to highlight patterning of the brain, and the use of a genetically sensitizing locus, Lis1/Pafah1b1, to predispose animals to neurodevelopmental defects. We recovered and mapped eight monogenic mutations, seven of which affect neurodevelopment. We have evidence for a causal gene in four of the eight mutations. We describe in detail two of these: a mutation in the planar cell polarity gene scribbled homolog (Drosophila) (Scrib) and a mutation in caspase-3 (Casp3). We find that refining ENU mutagenesis in these ways is an efficient experimental approach and that investigation of the developing mammalian nervous system using forward genetic experiments is highly productive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号