首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Freshwater snails and anuran tadpoles have been suggested to have their highest population densities in ponds of intermediate size where abiotic disturbance (e.g. desiccation) is low and large predators absent. Both snails and tadpoles feed on periphytic algae and, thus, there should be a large potential for competitive interactions to occur between these two distantly related taxa. In a field experiment we examined the relative strength of competition between two closely related snail species, Lymnaea stagnalis and L. peregra, and between L. stagnalis and tadpoles of the common frog, Rana temporaria. Snail growth and egg production and tadpole size at and time to metamorphosis were determined. Effects on the common food source, periphyton, were monitored with the aid of artificial substrates. Periphyton dry weight was dramatically reduced in the presence of snails and/or tadpoles. There were no competitive effects on growth or egg production of the two snail species when they were coexisting. Mortality of L. peregra was high (95%) after reproduction, but independent of treatment. Growth of L. stagnalis was reduced only at the highest tadpole densities, whereas egg production was reduced both by intraspecific competition and by competition with tadpoles. Differences in egg production were retained after tadpole metamorphosis. Tadpole larval period increased, weight of metamorphosing frogs decreased and growth rate was reduced as a function of increasing tadpole density. However, contrary to expectation, snails had a positive effect on tadpole larval period, weight and growth rate. Further, in experimental containers without snails there was a dense growth of the filamentous green alga Cladophora sp. We suggest that the facilitative effects of snails on tadpoles are due to an indirect mutualistic mechanism, involving competition between food sources of different quality (microalgae and Cladophora sp.) and tadpoles being competitively dominant over snails for the preferred food source (microalgae). In the presence of tadpoles snails will be forced to feed on low-quality Cladophora, increasing nutrient turnover rates, which results in enhanced productivity of microalgae, increasing tadpole food resources. Thus, tadpoles have a negative effect on snails through resource depression, while snails facilitate tadpole growth through an indirect enhancement of food availability.  相似文献   

2.
Density-dependent population regulation is important in many natural populations, and in those populations, high population density is a likely stressor. In amphibians, previous laboratory studies with tadpoles suggest that corticosterone, the main glucocorticoid stress hormone, is one of the key regulators of density-dependent growth. To test this relationship in natural settings, we manipulated wood frog (Rana sylvatica) tadpole density at three levels in outdoor mesocosms and used a capture stress protocol to examine the hormonal stress response. In addition, we used the same capture protocol in six natural ponds (three high density and three low density). In the mesocosms, there was an increase in corticosterone levels in tadpoles following 1 h of confinement at weeks 1, 2, and 5. However, while tadpoles maintained at higher densities were smaller after metamorphosis, density did not alter mean levels of corticosterone obtained during confinement, and baseline levels of corticosterone did not differ between the densities. Similarly, in natural ponds, density did not correlate with baseline corticosterone or mean corticosterone levels obtained during confinement. We suggest that the physiological response to density may vary across the range of natural densities and that the role of corticosterone may be limited to periods of extreme high density, such as during pond-drying events.  相似文献   

3.
When prey are differentially affected by intra and interspecific competition, the cooccurrence of multiple prey species alters the per capita availability of food for a particular prey species which could alter how prey respond to the threat of predation, and hence the overall‐effect of predators. We conducted an experiment to examine the extent to which the nonconsumptive and overall effect of predatory water bugs on snail and tadpole traits (performance and morphology) depended on whether tadpoles and snails cooccurred. Tadpoles and snails differed in their relative susceptibility to intraspecific and interspecific competition, and predators affected both prey species via consumptive and nonconsumptive mechanisms. Furthermore, the overall effect of predators often depended on whether another prey species was present. The reasoning for why the overall effect of predators depended on whether prey species cooccurred, however, differed for each of the response variables. Predators affected snail body growth via nonconsumptive mechanisms, but the change in the overall effect of predators on snail body growth was attributable to how snails responded to competition in the absence of predators, rather than a change in how snails responded to the threat of predation. Predators did not affect tadpole body growth via nonconsumptive mechanisms, but the greater vulnerability of competitively superior prey (snails) to predators increased the strength of consumptive mechanisms (and hence the overall effect) through which predators affected tadpole growth. Predators affected tadpole morphology via nonconsumptive mechanisms, but the greater propensity for predators to kill competitively superior prey (snails) enhanced the ability of tadpoles to alter their morphology in response to the threat of predation by creating an environment where tadpoles had a higher per capita supply of food available to invest in the development of morphological defenses. Our work indicates that the mechanisms through which predators affect prey depends on the other members of the community.  相似文献   

4.
Towards understanding the ontogeny of energy balance regulation in vertebrates we analyzed the responses of corticotropin-releasing factor (CRF) and corticosterone to food deprivation in the Western spadefoot toad (Spea hammondii) at three developmental stages: premetamorphic tadpole, prometamorphic tadpole, and juvenile. Corticosterone responses to 5 days of food deprivation varied among developmental stages. Both pre- and prometamorphic tadpoles increased whole-body corticosterone content with food deprivation, but the magnitude of the response of premetamorphic tadpoles was significantly greater. By contrast, juvenile toads decreased plasma corticosterone concentration. Similarly, brain CRF peptide content tended to increase in food-deprived tadpoles but did not change in food-deprived juveniles. Therefore, there is an ontogenetic difference in the way the hypothalamic-pituitary-interrenal (HPI) axis responds to food deprivation in amphibians. In tadpoles, the HPI axis is activated in response to fasting as is seen in birds and mammals, and may be associated with mobilization of stored fuels and increased foraging. Juvenile toads do not respond to food deprivation by activating the HPI axis, but instead pursue a strategy of energy conservation that involves a reduction in plasma corticosterone concentration.  相似文献   

5.
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.  相似文献   

6.
Individuals can compete either through direct interference or uptake of limiting resources. If competing individuals are able to recognize their relatives, relatedness of competitors may evoke kin selection, which favours relatively even resource share among relatives. Resource competition is often size-symmetric, i.e. proportional to an individual's biomass, while interference competition is asymmetric giving large individuals a disproportionate advantage over small individuals. Kin-selection is predicted to reduce the intensity of direct interference and competitive asymmetry, leading to increased mean and decreased variation in individual size. We tested these predictions by investigating the effects of relatedness on age and size at metamorphosis in the common frog Rana temporaria tadpoles in a laboratory experiment. We reared related (full- and half-sibs) and unrelated tadpoles of different sizes (small, large, small and large together) at two densities until metamorphosis. Relatedness had little effect on mean growth, but it reduced size variation, as measured with coefficient of variation. Furthermore, there was a significant interaction between relatedness and density in size at metamorphosis, so that relatives always grew better in lower density, but growth was less affected by density among unrelated individuals. This indicates that the effects of relatedness on tadpole performance may be context dependent. Initial size differences in the mixed size treatment evened out during the course of the experiment, and initially small tadpoles were able to compensate the early growth losses, although it took longer for them to reach metamorphosis. We conclude that although relatedness may have rather small effects on the growth and development of R. temporaria tadpoles, it increases the symmetry of resource share decreasing between-individual variation in size at metamorphosis.  相似文献   

7.
Robert A. Newman 《Oecologia》1998,115(1-2):9-16
Phenotypic plasticity is adaptive for an organism inhabiting a variable environment if the optimal phenotype of a trait that affects fitness varies with environmental conditions, and if the organism can perceive environmental conditions and respond appropriately. Wilbur and Collins have proposed that amphibian larvae might respond adaptively to changes in their resource environment. If conditions for growth in the aquatic environment deteriorate, then a tadpole should metamorphose earlier and smaller than a tadpole under constant high growth conditions. Several experiments on a variety of species have tested this prediction, but only one demonstrated such a response. That experiment involved Couch's spadefoot toads (Scaphiopus couchii) and employed a gradual decrease in food level, whereas the others all used an abrupt switch from high to low food. The purpose of the present experiment was to examine the response of S. couchii to an abrupt change in food level, and to determine if the response depended on the level of two other factors, density and temperature, that also affect larval development. The average effects of the abrupt change in food level were similar to those seen in studies on other species: age at metamorphosis was primarily determined by the early food regime, and size at metamorphosis was determined by food level late in the larval period, suggesting that the effect of decreased food depends on how the food change is done. However, the response to even an abrupt food change depended on interactions with other environmental factors. At high temperature, high initial food, and low density, development was very rapid and tadpoles switched from high to low food metamorphosed at about the same time and size as those at constant high food. In contrast, under high temperature and high initial food conditions, but at high density, tadpoles switched to low food metamorphosed somewhat earlier and smaller, on average, than tadpoles kept at high food. At low temperature, the direction of response depended on density: tadpoles metamorphosed much smaller and slightly, but significantly, earlier at low density, but smaller and later at high density. The developmental response to increased food also varied with temperature. Larvae at high temperature metamorphosed earlier and larger than those at constant low food. At low temperature, larvae metamorphosed larger, but at nearly the same time as their counterparts at constant low food. The combination of high density and constant low food prevented any tadpoles from metamorphosing at high temperature, and allowed relatively few metamorphs at low temperature. Under conditions which impose either very rapid or retarded development, the opportunity to respond to altered food level may be limited. Interactions among environmental factors, therefore, may constrain responses to changing conditions, and may even prevent completion of development. Received: 3 February 1997 / Accepted: 2 October 1997  相似文献   

8.
谢文华  陶双伦  杨冬梅  梁静  李俊年 《生态学报》2014,34(22):6583-6588
种群密度效应主要表现在影响和调节种群的死亡率、发育速率、繁殖率以及扩散、迁移等反应种群数量动态的重要参数。分析密度对大树蛙蝌蚪生长发育和存活率的影响,有助于探究外界环境因子导致大树蛙种群密度迅速下降的作用机制。设置了15、20、25只/L和30只/L 4个密度组,测量大树蛙蝌蚪的尾长、体长、发育时间和存活率。结果表明,在15—30只/L范围内,密度升高显著降低了大树蛙蝌蚪尾长和体长的生长速率,减小其变态期的尾长和体长大小,其中与15只/L相比,20、25只/L和30只/L 3组蝌蚪的尾长分别降低了11.6%、11.8%和13.9%,体长分别降低了11.1%、9.5%和12.9%;随着密度的升高,大树蛙蝌蚪发育至跗蹠部伸长期和前肢伸出期的所需时间显著延长;大树蛙蝌蚪生长后期的存活率随密度升高显著降低,但密度对蝌蚪生长早期的存活率影响不显著。因此,密度升高可显著减小大树蛙蝌蚪的尾长和体长、延长发育时间和降低其生长后期的存活率,可能影响大树蛙蝌蚪变态后的适合度。  相似文献   

9.
The cane toad (Rhinella marina) is one of the most successful invasive species worldwide, and has caused significant negative impacts on Australian fauna. Experimental work in the laboratory and in mesocosms has shown that tadpoles of native frogs can affect survival, size at metamorphosis and duration of larval period of cane toad tadpoles. To test if these effects occur in nature, we conducted a field experiment using two temporary ponds where we set up enclosures with tadpoles of native green tree frogs (Litoria caerulea) and cane toads in treatments with a range of densities and combinations. The presence of green tree frog tadpoles significantly decreased the growth rate of toad tadpoles and increased the duration of their larval period in both ponds; in one pond, frog tadpoles also significantly reduced the body length and mass of metamorph toads. Toad tadpoles did not have any significant negative effects on green tree frog tadpoles, but there was strong intraspecific competition within the latter species: increased frog tadpole density resulted in increased larval period and reduced survival, growth rate and size at metamorphosis for frogs at one or both ponds. Our results are encouraging for the possibility of using native frogs as one component of an integrated approach to the biological control of cane toads.  相似文献   

10.
We investigated the effects of corticotropin-releasing factor (CRF) and corticosterone (CORT) on foraging and locomotion in Western spadefoot toad (Spea hammondii) tadpoles and juveniles to assess the behavioral functions of these hormones throughout development. We administered intracerebroventricular injections of ovine CRF or CRF receptor antagonist alphahelical CRF((9-41)) to tadpoles and juveniles, and observed behavior within 1.5 h after injection. In both premetamorphic (Gosner stage 33) and prometamorphic (Gosner stages 35-37) tadpoles, CRF injections increased locomotion and decreased foraging. Injections of alphahelical CRF((9-41)) reduced locomotion but did not affect foraging in premetamorphic tadpoles, but dramatically increased foraging in prometamorphic tadpoles compared to both placebo and uninjected controls. Similarly, alphahelical CRF((9-41)) injections stimulated food intake and prey-catching behavior in juveniles. These results suggest that in later-staged amphibians, endogenous CRF secretion modulates feeding by exerting a suppressive effect on appetite. By contrast to the inhibitory effect of CRF, 3-h exposure to CORT (500 nM added to the aquarium water) stimulated foraging in prometamorphic tadpoles. These tadpoles also exhibited a CORT-mediated increase in foraging 6 h after CRF injection, which was associated with elevated whole-body CORT content and blocked by glucocorticoid receptor (GR) antagonist (RU486) injections. Thus, exogenous CRF influences locomotion and foraging in both pre- and prometamorphic tadpoles, but endogenous CRF secretion in relatively unstressed animals does not affect foraging until prometamorphic stages. Furthermore, the opposing actions of CRF and CORT on foraging suggest that they are important regulators of energy balance and food intake in amphibians throughout development.  相似文献   

11.
12.
Tadpole impact on periphytic algae was estimated with an exclosure experiment in the field. Algae growth on control (exposed) and experimental (netted-in) Perspex plates was measured in 12 ponds in 1991 and 8 in 1993.An index of snail (Lymnea and Planorbis)presence in the ponds was used to correct their effect. Grazing pressure (difference in amount of algae between control and experimental plates)differed between ponds. The difference was correlated to amount of Rana tadpoles present in the pond. At the higher densities of tadpoles observed in the study ponds, the algae standing crop on exposed plates was about 50–75% of that on netted-in plates. These result demonstrate that there is potential for effects of exploitation competition in ponds with a high tadpole density. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Tadpole growth and development are easily affected by intraspecific competition in tank experiments, provided treatment density is sufficiently high. Is this a phenomenon also observed in nature? A pond was divided into four tadpole-proof sections. Each year for 8 years, all spawn laid by moorfrogs (Rana arvalis) in this pond was relocated to create relative spawn and tadpole densities of 1 : 4 : 1 : 4. No direct effect of the density manipulation on survival, tadpole size, and development and metamorph timing and size could be demonstrated. However, I also measured actual tadpole density during the time of development. Apart from the experimental density manipulation, this measure included effects of between-year variation in amount of spawn, natural tadpole mortality, and pond drying (which concentrated the tadpoles by decreasing the area of the pond sections). Actual density had limited but significant effects on tadpole size and development. I suggest that density regulation, acting on the tadpole stage, may be present in the population but was of less short-term importance than abiotic factors and, possibly, adult density regulation. Consequences of the findings for conservation are discussed.  相似文献   

14.
The diverse benefits of group living include protection against predators through dilution effects and greater group vigilance. However, intraspecific aggregation can decrease developmental rates and survival in prey species. We investigated the impact on tadpole development and behaviour of the interaction between population density and predation risk. Spotted tree frog (Litoria spenceri: Hylidae, Dubois 1984) tadpoles were kept at one of three different densities (two tadpoles per litre, five tadpoles per litre or 10 tadpoles per litre) until metamorphosis in the presence or absence of predatory cues. We aimed to determine the influence of population density, predation and the interaction of both factors in determining growth rates in tadpoles. Tadpoles were measured weekly to assess growth and development and filmed to quantify differences in activity and feeding frequency between groups. Generally, tadpoles housed without predators had longer developmental periods when housed with a predator, but there was no effect on tail length or total length. There was no effect of either predation cues or density on percentage of individuals feeding or moving. Although the effects of the presence of predators alone may appear to be less than the effects of the presence of competitors, the prioritisation of competitiveness over predator avoidance may increase vulnerability of tadpoles to the lethal threat of predators. This is particularly important in species such as L. spenceri, which is at risk from introduced fish predators.  相似文献   

15.
Glyptotendipes paripes larvae were reared in wells of tissue culture plates, in groups of 2, 4, 8, 16, and 32 (representing densities of about 1,300, 2,600, 5,200, 10,400, and 20,800 larvae per m2, respectively). Larval groups were supplied with one of two concentrations (low or high) of food and larvae were individually observed to evaluate the effects of density on mortality, growth, development, behavior, and adult body size. Increased larval densities resulted in higher mortality, as well as slower larval growth and development. The distribution of developmental time became flatter at higher density, with a wider range of values, or even became bimodal. This was a consequence of the most rapidly developing individuals at higher densities emerging as adults sooner than the fastest developing individuals at lower densities, although overall mean developmental time was longer at higher densities. At higher densities, growth and development of smaller larvae were slowed, based on the relative difference in body length between competitors. When larger competitors emerged as adults or died, the growth of smaller larvae may have accelerated, resulting in increased variability of developmental times. The effect of larval density on adult body size was complex, with the largest body size found at the lowest density and a second peak of adult size at high-middle densities, with smaller adult body sizes found at low-middle, and high densities. Similarly, as with developmental time, the range of body size increased with increasing density. Examined food concentrations had no effect on larval mortality, but significantly affected developmental time, growth rate, and adult body size. At higher densities, larvae spent more time gathering food and were engaged in aggressive or antagonistic behaviors.  相似文献   

16.
1. Behavioural, morphological and coloration plasticity are common responses of prey to predation risk. Theory predicts that prey should respond to the relative magnitude of risk, rather than a single level of response to any risk level. In addition to conspecific and predator densities, prey growth and differentiation rates affect the duration of vulnerability to size- and stage-limited predators and therefore the relative value of defences. 2. We reared tadpoles of the Neotropical treefrog Dendropsophus ebraccatus with or without cues from a predator (Belostoma sp.) in ecologically relevant warm or cool temperatures. To track phenotypic changes, we measured morphology, tail coloration and developmental stage at three points during the larval period. 3. Cues from predators interacted with growth conditions causing tadpoles to alter their phenotype, changing only tail colour in response to predators in warm water, but both morphology and colour in cool growth conditions. Tadpoles with predators in warm water altered coloration early but converged on the morphology of predator-free controls. Water temperature alone had no effect on tadpole phenotype. 4. We demonstrate that seemingly small variation in abiotic environmental conditions can alter the expression of phenotypic plasticity, consistent with predictions about how growth rate affects risk. Predator-induced tadpole phenotypes depended on temperature, with strong expression only in temperatures that slow development. Thermal modulation of plastic responses to predators may be broadly relevant to poikilotherm development. It is important to include a range of realistic growth conditions in experiments to more fully understand the ecological and evolutionary significance of plasticity.  相似文献   

17.
对花姬蛙(Microhyla pulchra)蝌蚪捕食藻类的效应进行了初步研究。结果表明,随着蝌蚪密度的增加,对蓝藻的总捕食量显著增加,但每只蝌蚪的平均捕食量随蝌蚪密度的增加而下降。文中讨论了蝌蚪在水资源环境保护中控制蓝藻暴发的意义。  相似文献   

18.
王汉屏 《四川动物》2007,26(2):406-408
将中国林蛙(Rana chensinensis)蝌蚪分别饲养在40只/L、80只/L、120只/L、160只/L、200只/L和240只/L6个不同的密度条件下,通过定时定量喂食及测量其全长、尾长、体宽、体重和死亡率的变化,分析密度对中国林蛙蝌蚪生长发育的影响。实验结果表明:(1)饲养密度和生长发育时间及两者的交互作用对中国林蛙蝌蚪的生长发育影响都极其显著;(2)在40只/L的密度下,中国林蛙蝌蚪的全长、尾长、体宽、体重的增长速率最快,在240只/L的密度下,中国林蛙蝌蚪的全长、尾长、体宽、体重的增长速率最慢;(3)在相同时间内,40只/L的密度条件下中国林蛙蝌蚪的存活率最高,在240只/L的密度条件下中国林蛙蝌蚪的存活率最低;(4)中国林蛙蝌蚪的生长发育速度随饲养密度的升高而减慢。  相似文献   

19.
P. Eklöv 《Oecologia》2000,123(2):192-199
Chemical signals are used as information by prey to assess predation risk in their environment. To evaluate the effects of multiple predators on prey growth, mediated by a change in prey activity, I exposed small and large bullfrog (Rana catesbeiana) larvae (tadpoles) to chemical cues from different combinations of bluegill sunfish (Lepomis macrochirus) and larval dragonfly (Anax junius) predators. Water was regularly transferred from predation trials (outdoor experiment) to aquaria (indoor experiment) in which activity and growth of tadpoles was measured. The highest predation mortality of small bullfrog larvae in the outdoor experiment was due to Anax, and it was slightly lower in the presence of both predators, probably resulting from interactions between predators. There was almost no mortality of prey with bluegill. The activity and growth of small bullfrog larvae was highest in the absence of predators and lowest in the presence of Anax. In the presence of bluegill only, or with both predators, the activity and growth of small bullfrog tadpoles was intermediate. Predators did not affect large tadpole activity and growth. Regressing mortality of small bullfrog tadpoles against activity and growth of bullfrog tadpoles revealed a significant effect for small bullfrog larvae but a non-significant effect for large bullfrog larvae. This shows that the response of bullfrog tadpoles to predators is related to their own body size. The experiment demonstrates that chemical cues are released both as predator odor and as alarm substances and both have the potential to strongly alter the activity and growth of prey. Different mechanisms by which chemical cues may be transmitted to species interactions in the food web are discussed. Received: 28 June 1999 / Accepted: 15 November 1999  相似文献   

20.
Species with a wide distribution over latitudinal gradients often exhibit increasing growth and development rates towards higher latitudes. Ecological theory predicts that these fast-growing genotypes are, in the absence of trade-offs with fast growth, better competitors than low-latitude conspecifics. While knowledge on key ecological traits along latitudinal clines is important for understanding how these clines are maintained, the relative competitive ability of high latitude individuals against low latitude conspecifics has not been tested. Growth and development rates of the common frog Rana temporaria increase along the latitudinal gradient across Scandinavia. Here we investigated larval competition over food resources within and between two R. temporaria populations originating from southern and northern Sweden in an outdoor common garden experiment. We used a factorial design, where southern and northern tadpoles were reared either as single populations or as mixes of the two populations at two densities and predator treatments (absence and non-lethal presence of Aeshna dragonfly larvae). Tadpoles from the high latitude population grew and developed faster and in the beginning of the experiment they hid less and were more active than tadpoles from the low latitude population. When raised together with high latitude tadpoles the southern tadpoles had a longer larval period, however, the response of high latitude tadpoles to the competition by low latitude tadpoles did not differ from their response to intra-population competition. This result was not significantly affected by density or predator treatments. Our results support the hypothesis that high latitude populations are better competitors than their low latitude conspecifics, and suggest that in R. temporaria fast growth and development trade off with other fitness components along the latitudinal gradient across Scandinavia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号