首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD+ and NADP+, the enzyme catalyzed the hydrolysis of several NAD+ analogues and the pyridine base exchange reaction with conversion of NAD+ into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD+ and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a Km value for NAD+ of 26 microM. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition.  相似文献   

4.
Biosensors for the oxidized substrates of NAD(P)(+)-specific dehydrogenases demand the reductive recycling of the coenzymes. So far, suitable catalysts for the corresponding two-electron transfer are not available. In the present paper, this transport has been realized by a combined electrocatalytical and electroenzymatic process. Lipoic acid has been reduced on graphite electrodes functionalized with Fe(II)-phthalocyanine in 95% yield at-1200 mV in phosphate buffer pH 7.0. With the electrocatalytically reduced product, dihydrolipoic acid, lipoamide dehydrogenase could reduce NAD(+) in 20% yield and thioredoxin reductase NADP(+) in 18.4% yield. So far, the combined electrocatalytic/electroenzymatic system has not yet been realized, mainly because at the potential needed for the lipoic acid reduction, a parallel one-electron reduction of NAD(P)(+) was observed, implying the dimerization of the coenzyme.  相似文献   

5.
meso-Diaminopimelate dehydrogenase (meso-DAPDH) catalyzes the reversible NADP+-dependent oxidative deamination of meso-2,6-diaminopimelate (meso-DAP) to produce l-2-amino-6-oxopimelate. meso-DAPDH is divided into two major clusters, types I and II, based on substrate specificity and structural characteristic. Here, we describe a novel type II meso-DAPDH from Thermosyntropha lipolytica (TlDAPDH). The gene encoding a putative TlDAPDH was expressed in Escherichia coli cells, and then the enzyme was purified 7.3-fold to homogeneity from the crude cell extract. The molecule of TlDAPDH seemed to form a hexamer, which is the typical structural characteristic of type II meso-DAPDHs. The purified enzyme exhibited oxidative deamination activity toward meso-DAP with both NADP+ and NAD+ as coenzymes. TlDAPDH exhibited reductive amination activity of corresponding 2-oxo acid to produce d-amino acid. In particular, the productivities for d-aspartate and d-glutamate have not been reported in the type II enzymes. The optimum pH and temperature for oxidative deamination of meso-DAP were 10.5 and 55°C, respectively. TlDAPDH retained more than 80% of its activity after incubation for 30 min at temperatures between 50°C and 65°C and in the pH range of 4.5–9.5. Moreover, the coenzyme and substrate recognition mechanisms of TlDAPDH were elucidated based on a multiple sequence alignment and the homology model. The results of these analyses suggested that the molecular mechanisms for coenzyme and substrate recognition of TlDAPDH were similar to those of meso-DAPDH from S. thermophilum, which is the representative type II enzyme. Based on the kinetic characteristics and structural comparison, TlDAPDH was considered to be a novel type II meso-DAPDH.  相似文献   

6.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme of central carbon metabolism, was studied in a Bacillus cereus strain isolated from the phosphate layer from Morocco. Enzymatic assays with cell extracts demonstrated that when grown on Luria-Bertani (LB) medium, B. cereus contains a major NAD+-dependent GAPDH activity and only traces of NADP+-dependent activity, but in cells grown on Pi-supplemented LB medium a strong increase of the NADP+-dependent activity, that became predominant, occurs concurrently with a GAPDH protein increase. Our results show that B. cereus possesses two GAPDH activities, namely NAD+- and NADP+-dependent, catalyzed by two enzymes with distinct coenzyme specificity and different phosphate regulation patterns. The finding of a phosphate-stimulated NADP+-dependent GAPDH in B. cereus indicates that this bacterium can modulate its primary carbon metabolism according to phosphate availability.  相似文献   

7.
A study was made of the NAD+-dependent alanine dehydrogenase (EC 1.4.1.1) elaborated by the methylotrophic bacterium Pseudomonas sp. strain MA when growing on succinate and NH4Cl. This enzyme was purified 400-fold and was found to be highly specific for NH3 and NAD+; however, hydroxypyruvate and bromopyruvate, but not alpha-oxoglutarate or glyoxylate, could replace pyruvate to a limited extent. The Mr of the native enzyme was shown to be 217,000, and electrophoresis in SDS/polyacrylamide gels revealed a minimum Mr of 53,000, suggesting a four-subunit structure. The enzyme, which has a pH optimum of 9.0, operated almost exclusively in the aminating direction in vitro. It was induced by NH3 or by alanine, and was repressed by growth on methylamine or glutamate. It is suggested that this enzyme has two roles in this organism, namely in NH3 assimilation and in alanine catabolism.  相似文献   

8.
9.
10.
A sensitive isotope exchange method was developed to assess the requirements for and compartmentation of pyruvate and oxalacetate production from malate in proliferating and nonproliferating human fibroblasts. Malatedependent pyruvate production (malic enzyme activity) in the particulate fraction containing the mitochondria was dependent on either NAD+ or NADP+. The production of pyruvate from malate in the soluble, cytosolic fraction was strictly dependent on NADP+. Oxalacetate production from malate (malate dehydrogenase, EC 1.1.1.37) in both the particulate and soluble fraction was strictly dependent on NAD+. Relative to nonproliferating cells, NAD+-linked malic enzyme activity was slightly reduced and the NADP+-linked activity was unchanged in the particulate fraction of serum-stimulated, exponentially proliferating cells. However, a reduced activity of particulate malate dehydrogenase resulted in a two-fold increase in the ratio of NAD(P)+-linked malic enzyme to NAD+-linked malate dehydrogenase activity in the particulate fraction of proliferating fibroblasts. An increase in soluble NADP+-dependent malic enzyme activity and a decrease in NAD+-linked malate dehydrogenase indictated an increase in the ratio of pyruvate-producing to oxalacetate-producing malate oxidase activity in the cytosol of proliterating cells. These coordinate changes may affect the relative amount of malate that is oxidized to oxalacetate and pyruvate in proliferating cells and, therefore, the efficient utilization of glutamine as a respiratory fuel during cell proliferation.  相似文献   

11.
The correct localization of oxidative enzymes using cytochemical tetrazolium methods, in which low molecular weight electron carriers such as NAD(P)H and reduced phenazine methosulphate (PMSH) are used, can be endangered by the escape of the reduced intermediates before they react to form the insoluble formazan at the true enzyme-containing sites. To investigate this phenomenon, the glucose-6-phosphate dehydrogenase reaction was studied in fixed erythrocytes which, because of their microscopic dimensions, are well-suited for studying the loss of intermediates. A mixture of active and heat-inactivated fixed erythrocytes was incubated in a PMS-supplemented medium for glucose-6-phosphate dehydrogenase. The cytophotometric histograms showed that the final formazan precipitate was equally distributed over both active and inactivated cells. When bovine serum albumin was added to the medium, all the formazan was found to be bound to this protein and the erythrocytes remained essentially unstained. The false localization in this system could be explained by an unfavourable balance between the capture of electrons carried by NADPH within the erythrocyte and the diffusion of NADPH out of the erythrocyte. The rate constant of NADPH oxidation was determined, as was also the diffusion constant of NADPH in a protein matrix. Substituting the data obtained into formulae derived from the enzyme cytochemical localization theory of Holt & O'Sullivan (1958), it was calculated that the capture reaction was highly deficient and, theoretically, less than 1% of the total amount of formazan produced was localized within the erythrocyte which explains the false localization observed. The importance of these findings for the cytochemical demonstration of NAD(P)+-dependent dehydrogenases in cells and electropherograms is briefly discussed.  相似文献   

12.
Carbonyl compounds such as alpha-ketoglutarate, pyruvate, oxaloacetate, butyraldehyde, acetaldehyde or acetone react with NAD or NADP to give adducts. Binding studies of adducts to dehydrogenases are performed by means of ultraviolet differential spectroscopy, circular dichroism and spectrofluorimetry. The dehydrogenases show a high degree of binding specificity toward the adducts which contain their specific oxidized substrate and their specific coenzyme. The high selectivity of the dehydrogenases for adducts is evidenced by binding studies of NAD(P)-pyruvate and NAD(P)-alpha-ketoglutarate adducts on glutamate dehydrogenase at pH 7.6 and 8.9. Evidence is presented showing that adducts bind to the active site of the enzymes.  相似文献   

13.
Abstract A fragment of Methylobacter marinus A45 DNA has been cloned and sequenced, and an open reading frame has been identified that could code for a 46-kDa polypeptide. Comparison of the deduced amino acid sequence of the polypeptide against the protein data bank has revealed strong similarity with a number of alcohol dehydrogenases, with highest similarity towards class III alcohol dehydrogenases, which recently have been shown to be identical to glutathione-dependent formaldehyde dehydrogenases. We were unable to measure appreciable levels of NAD(P)-dependent formaldehyde dehydrogenases or alcohol dehydrogenase activities using aldehydes or primary or secondary alcohols in cell-free extracts from batch cultures of M. marinus A45. However, formaldehyde dehydrogenases activity was detected on zymograms. Our data suggest that, although NAD(P)-linked formaldehyde dehydrogenase or alcohol dehydrogenase activities are undetectable in cell-free extracts of most methylotrophs employing the ribulose monophosphate pathway for formaldehyde assimilation and dissimilation, the gene encoding formaldehyde dehydrogenase is present in M. marinus A45 and may be present in more of these organisms as well.  相似文献   

14.
The mandelate pathway of Pseudomonas putida ATCC 12633 comprises five enzymes and catalyzes the conversion of R- and S-mandelamide to benzoic acid which subsequently enters the beta-ketoadipate pathway. Although the first four enzymes have been extensively characterized the terminal enzyme, a NAD(P)(+)-dependent benzaldehyde dehydrogenase (BADH), remains largely undescribed. Here we report that BADH is a dimer in solution, and that DTT is necessary both to maintain the activity of BADH and to prevent oligimerization of the enzyme. Site-directed mutagenesis confirms that Cys249 is the catalytic cysteine and identifies Cys140 as the cysteine likely to be involved in inter-monomer disulfide formation. BADH can utilize a range of aromatic substrates and will also operate efficiently with cyclohexanal as well as medium-chain aliphatic aldehydes. The logV and logV/K pH-rate profiles for benzaldehyde with either NAD(+) or NADP(+) as the coenzyme are both bell-shaped. The pK(a) values on the ascending limb range from 6.2 to 7.1 while those on the descending limb range from 9.6 to 9.9. A spectrophotometric approach was used to show that the pK(a) of Cys249 was 8.4, i.e., Cys249 is not responsible for the pK(a)s observed in the pH-rate profiles.  相似文献   

15.
The enzymes of the mandelate metabolic pathway permit Pseudomonas putida ATCC 12633 to utilize either or both enantiomers of mandelate as the sole carbon source. The genes encoding the mandelate pathway were found to lie on a single 10.5-kb restriction fragment. Part of that fragment was shown to contain the genes coding for mandelate racemase, mandelate dehydrogenase, and benzoylformate decarboxylase arranged in an operon. Here we report the sequencing of the remainder of the restriction fragment, which revealed three further open reading frames, denoted mdlX, mdlY, and mdlD. All were transcribed in the opposite direction from the genes of the mdlABC operon. Sequence alignments suggested that the open reading frames encoded a regulatory protein (mdlX), a member of the amidase signature family (mdlY), and an NAD(P)(+)-dependent dehydrogenase (mdlD). The mdlY and mdlD genes were isolated and expressed in Escherichia coli, and the purified gene products were characterized as a mandelamide hydrolase and an NAD(P)(+)-dependent benzaldehyde dehydrogenase, respectively.  相似文献   

16.
17.
We found N-methyl-L-amino acid dehydrogenase activity in various bacterial strains, such as Pseudomonas putida and Bacillus alvei, and cloned the gene from P. putida ATCC12633 into Escherichia coli. The enzyme purified to homogeneity from recombinant E. coli catalyzed the NADPH-dependent formation of N-alkyl-L-amino acids from the corresponding alpha-oxo acids (e.g. pyruvate, phenylpyruvate, and hydroxypyruvate) and alkylamines (e.g. methylamine, ethylamine, and propylamine). Ammonia was inert as a substrate, and the enzyme was clearly distinct from conventional NAD(P)-dependent amino acid dehydrogenases, such as alanine dehydrogenase (EC 1.4.1.1). NADPH was more than 300 times more efficient than NADH as a hydrogen donor in the enzymatic reductive amination. Primary structure analysis revealed that the enzyme belongs to a new NAD(P)-dependent oxidoreductase superfamily, the members of which show no sequence homology to conventional NAD(P)-dependent amino acid dehydrogenases and opine dehydrogenases.  相似文献   

18.
NAD(P)-dependent dehydrogenases are useful catalysts for the synthesis of chiral compounds. Many active and stable enzymes are available that (with high enantioselectivity) reduce ketones or keto acids to chiral alcohols, hydroxy acids or amino acids. For economic reasons, these reactions need coupling to the simultaneous regeneration of NAD(P)H. For preparative applications, three components have to be combined: an appropriate enzyme, an efficient coenzyme-regenerating step and a suitable reaction-engineering technique.  相似文献   

19.
Acinetobacter calcoaceticus LMD 79.41 produced significant amounts of pyrrolo-quinoline quinone (PQQ) in its culture medium when grown on quinic acid or shikimic acid. Studies with LMD 79.41 and PQQ--mutants of this strain demonstrated that this organism contains an NAD(P)-independent quinate dehydrogenase (QDH) (EC 1.1.99.-), catalyzing the first degradation step of these compounds, and that the enzyme contains PQQ as a cofactor, i.e. is a quinoprotein. Synthesis of QDH was induced by protocatechuate and the enzyme appeared to be particle-bound. Acinetobacter lwoffi RAG-1 produced a quinoprotein QDH apoenzyme since growth on quinic acid only occurred in the presence of PQQ. The results obtained with the PQQ--mutants of strain LMD 79.41 also provided some insight into the regulation of PQQ biosynthesis and assemblage of quinoprotein enzymes in the periplasmic space. Since two species of Pseudomonas also contained a quinoprotein QDH, it is assumed that bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein.Abbreviations DCPIP 2,6-dichlorophenolindophenol  相似文献   

20.
NAD(P)依赖型的氧化还原酶是一类重要的生物催化剂,在生物合成中被广泛应用。以亲和技术为基础的分离纯化方法与其它分离制备方法相比具有高选择性、高活力回收等优点。本文着重讨论亲和色谱技术在NAD(P)依赖型的氧化还原酶的分离纯化及制备中的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号