首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in the microenvironment of the Trp-3 on the i-face of pig pancreatic IB phospholipase A2 (PLA2) provide a measure of the tight contact (Ramirez and Jain, Protein Sci. 9, 229-239, 1991) with the substrate interface during the processive interfacial turnover. Spectral changes from the single Trp-substituent at position 1, 2, 6, 10, 19, 20, 31, 53, 56 or 87 on the surface of W3F PLA2 are used to probe the Trp-environment. Based on our current understanding only the residue 87 is away from i-face, therefore all other mutants are well suited to report modest differences along the i-face. All Trp-mutants bind tightly to anionic vesicles. Only those with Trp at 1, 2 or 3 near the rim of the active site on the i-face cause significant perturbation of the catalytic functions. Most other Trp-mutants showed < 3-fold change in the interfacial processive turnover rate and the competitive inhibition by MJ33. Binding of calcium to the enzyme in the aqueous phase had modest effect on the Trp-emission intensity. However, on the binding of the enzyme to the interface the fluorescence change is large, and the rate of oxidation of the Trp-substituent with N-bromosuccinimide depends on the location of the Trp-substituent. These results show that the solvation environment of the Trp-substituents on the i-face is shielded in the enzyme bound to the interface. Additional changes are noticeable if the active site of the bound enzyme is also occupied, however, the catalytically inert zymogen of PLA2 (proPLA2) does not show such changes. Significance of these results in relation to the changes in the solvent accessibility and desolvation of the i-face of PLA2 at the interface is discussed.  相似文献   

2.
The changes in the microenvironment of the Trp-3 on the i-face of pig pancreatic IB phospholipase A2 (PLA2) provide a measure of the tight contact (Ramirez and Jain, Protein Sci. 9, 229-239, 1991) with the substrate interface during the processive interfacial turnover. Spectral changes from the single Trp-substituent at position 1, 2, 6, 10, 19, 20, 31, 53, 56 or 87 on the surface of W3F PLA2 are used to probe the Trp-environment. Based on our current understanding only the residue 87 is away from i-face, therefore all other mutants are well suited to report modest differences along the i-face. All Trp-mutants bind tightly to anionic vesicles. Only those with Trp at 1, 2 or 3 near the rim of the active site on the i-face cause significant perturbation of the catalytic functions. Most other Trp-mutants showed < 3-fold change in the interfacial processive turnover rate and the competitive inhibition by MJ33. Binding of calcium to the enzyme in the aqueous phase had modest effect on the Trp-emission intensity. However, on the binding of the enzyme to the interface the fluorescence change is large, and the rate of oxidation of the Trp-substituent with N-bromosuccinimide depends on the location of the Trp-substituent. These results show that the solvation environment of the Trp-substituents on the i-face is shielded in the enzyme bound to the interface. Additional changes are noticeable if the active site of the bound enzyme is also occupied, however, the catalytically inert zymogen of PLA2 (proPLA2) does not show such changes. Significance of these results in relation to the changes in the solvent accessibility and desolvation of the i-face of PLA2 at the interface is discussed.  相似文献   

3.
Yu BZ  Rogers J  Tsai MD  Pidgeon C  Jain MK 《Biochemistry》1999,38(15):4875-4884
Primary rate and equilibrium parameters for 60 site-directed mutants of bovine pancreatic phospholipase A2 (PLA2) are analyzed so incremental contributions of the substitution of specific residues can be evaluated. The magnitude of the change is evaluated so a functional role in the context of the N- and C-domains of PLA2 can be assigned, and their relationship to the catalytic residues and to the i-face that makes contact with the interface. The effect of substitutions and interfacial charge is characterized by the equilibrium dissociation constant for dissociation of the bound enzyme from the interface (Kd), the dissociation constant for dissociation of a substrate mimic from the active site of the bound enzyme (KL), and the interfacial Michaelis constants, KM and kcat. Activity is lost (>99.9%) on the substitution of H48 and D49, the catalytic residues. A more than 95% decrease in kcat is seen with the substitution of F5, I9, D99, A102, or F106, which form the substrate binding pocket. Certain residues, which are not part of the catalytic site or the substrate binding pocket, also modulate kcat. Interfacial anionic charge lowers Kd, and induces kcat activation through K56, K53, K119, or K120. Significant changes in KL are seen by the substitution of N6, I9, F22, Y52, K53, N71, Y73, A102, or A103. Changes in KM [=(k2+k-1)/k1] are attributed to kcat (=k2) and KL (=k-1/k1). Some substitutions change more than one parameter, implying an allosteric effect of the binding to the interface on KS, and the effect of the interfacial anionic charge on kcat. Interpreted in the context of the overall structure, results provide insights into the role of segments and domains in the microscopic events of catalytic turnover and processivity, and their allosteric regulation. We suggest that the interfacial recognition region (i-face) of PLA2, due to the plasticity of certain segments and domains, exercises an allosteric control on the substrate binding and chemical step.  相似文献   

4.
Yu BZ  Poi MJ  Ramagopal UA  Jain R  Ramakumar S  Berg OG  Tsai MD  Sekar K  Jain MK 《Biochemistry》2000,39(40):12312-12323
Pancreatic phospholipase A(2) (PLA2) shows a strong preference for the binding to the anionic interface and a consequent allosteric activation. In this paper, we show that virtually all the preference is mediated through 3 (Lys-53, -56, and -120) of the 12 cationic residues of bovine pancreatic PLA2. The lysine-to-methionine substitution enhances the binding of the enzyme to the zwitterionic interface, and for the K53,56,120M triple mutant at the zwitterionic interface is comparable to that for the wild type (WT) at the anionic interface. In the isomorphous crystal structure, the backbone folding of K53,56M K120,121A and WT are virtually identical, yet a significant change in the side chains of certain residues, away from the site of substitution, mostly at the putative contact site with the interface (i-face), is discernible. Such reciprocity, also supported by the spectroscopic results for the free and bound forms of the enzyme, is expected because a distal structural change that perturbs the interfacial binding could also affect the i-face. The results show that lysine-to-methionine substitution induces a structural change that promotes the binding of PLA2 to the interface as well as the substrate binding to the enzyme at the interface. The kinetic results are consistent with a model in which the interfacial Michaelis complex exists in two forms, and the complex that undergoes the chemical step is formed by the charge compensation of Lys-53 and -56. Analysis of the incremental changes in the kinetic parameters shows that the charge compensation of Lys-53 and -56 contributes to the activation and that of Lys-120 contributes only to the structural change that promotes the stability of the Michaelis complex at the interface. The charge compensation effects on these three residues also account for the differences in the anionic interface preference of the evolutionarily divergent secreted PLA2.  相似文献   

5.
We report the structures of the crystallographic dimer of porcine pancreatic IB phospholipase A(2) (PLA2) with either five sulfate or phosphate anions bound. In each structure, one molecule of a tetrahedral mimic MJ33 [1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol] and the five anions are shared between the two subunits of the dimer. The sn-2-phosphate of MJ33 is bound in the active site of one subunit (A), and the alkyl chain extends into the active site slot of the second subunit (B) across the subunit-subunit interface. The two subunits are packed together with a large hydrophobic and desolvated surface buried between them along with the five anions that define a plane. The anions bind by direct contact with two cationic residues (R6 and K10) per subunit and through closer-range H-bonding interactions with other polarizable ligands. These features of the "dimer" suggest that the binding of PLA2 to the anionic groups at the anionic interface may be dominated by coordination through H-bonding with only a partial charge compensation needed. Remarkably, the plane defined by the contact surface is similar to the i-face of the enzyme [Ramirez, F., and Jain, M. K. (1991) Proteins: Struct., Funct., Genet. 9, 229-239], which has been proposed to make contact with the substrate interface for the interfacial catalytic turnover. Additionally, these structures not only offer a view of the active PLA2 complexed to an anionic interface but also provide insight into the environment of the tetrahedral intermediate in the rate-limiting chemical step of the turnover cycle. Taken together, our results offer an atomic-resolution structural view of the i-face interactions of the active form of PLA2 associated to an anionic interface.  相似文献   

6.
Yu BZ  Janssen MJ  Verheij HM  Jain MK 《Biochemistry》2000,39(19):5702-5711
A well-defined region of pancreatic and other secreted phospholipase A2 (PLA2), which we call the i-face, makes a molecular contact with the interface to facilitate and control the events and processivity of the interfacial catalytic turnover cycles. The structural features of the i-face and its allosteric relationship to the active site remain to be identified. As a part of the calcium binding (26-34) loop, Leu-31 is located on the surface near the substrate binding slot of PLA2. Analysis of the primary rate and equilibrium parameters of the Leu-31 substitution mutants of the pig pancreatic PLA2 shows that the only significant effect of the substitution is to impair the chemical step at the zwitterionic interface in the presence of added NaCl, and only a modest effect is seen on kcat at the anionic interface. Leu-31 substitutions have little effect on the binding of the enzyme to the interface; the affinity for certain substrate mimics is modestly influenced in W3F, L31W double mutant. The fluorescence emission results with the double mutant show that the microenvironment of Trp-31 is qualitatively different at the zwitterionic versus anionic interfaces. At both of the interfaces Trp-31 is not shielded from the bulk aqueous environment as it remains readily accessible to acrylamide and water. The NaCl-induced change in the Trp-31 emission spectrum of the double mutant on the zwitterionic interface is similar to that seen on the binding to the anionic interface. Together, the kinetic and spectroscopic results show that the form of PLA2 at the zwitterionic interface (Ez) is distinguishably different from the catalytically more efficient form at the anionic interface (Ea). This finding provides a structural basis for the two-state model for kcat activation by the anionic interface. In conjunction with earlier results we suggest that neutralization of certain cationic residues of PLA2 exerts a control on the calcium loop through residue 31.  相似文献   

7.
Phosphorothioate oligonucleotides were identified which directly inhibited human type II phospholipase A2 (PLA2) enzyme activity in a sequence specific manner. The minimum pharmacophore common to all oligonucleotides which inhibited PLA2 enzyme activity consisted of two sets of three or more consecutive guanosine residues in a row. These oligonucleotides appear to form G quartets resulting in the formation of oligonucleotide aggregates. Additionally, a phosphorothioate backbone was required to be effective inhibitors of type II PLA2. The activity of one oligodeoxynucleotide, IP 3196 (5'-GGGTGGGTATAGAAGGGCTCC-3') has been characterized in more detail. IP 3196 inhibited PLA2 enzyme activity when the substrate was presented in the form of a phospholipid bilayer but not when presented in the form of a mixed micelle with anionic detergents. Human type II PLA2 was 50-fold more sensitive to inhibition by IP 3196 than venom and pancreatic type I enzymes. These data demonstrate that phosphorothioate oligonucleotides can specifically inhibit human type II PLA2 enzyme activity in a sequence specific manner.  相似文献   

8.
The phospholipase A(2) (PLA(2)) superfamily consists of a broad range of enzymes defined by their ability to catalyze the hydrolysis of the middle (sn-2) ester bond of substrate phospholipids. The hydrolysis products of this reaction, free fatty acid and lysophospholipid, have many important downstream roles, and are derived from the activity of a diverse and growing superfamily of PLA(2) enzymes. This review updates the classification of the various PLA(2)'s now described in the literature. Four criteria have been employed to classify these proteins into one of the 11 Groups (I-XI) of PLA(2)'s. First, the enzyme must catalyze the hydrolysis of the sn-2 ester bond of a natural phospholipid substrate, such as long fatty acid chain phospholipids, platelet activating factor, or short fatty acid chain oxidized phospholipids. Second, the complete amino acid sequence of the mature protein must be known. Third, each PLA(2) Group should include all of those enzymes that have readily identifiable sequence homology. If more than one homologous PLA(2) gene exists within a species, then each paralog should be assigned a Subgroup letter, as in the case of Groups IVA, IVB, and IVC PLA(2). Homologs from different species should be classified within the same Subgroup wherever such assignments are possible as is the case with zebra fish and human Group IVA PLA(2) orthologs. The current classification scheme does allow for historical exceptions of the highly homologous Groups I, II, V, and X PLA(2)'s. Fourth, catalytically active splice variants of the same gene are classified as the same Group and Subgroup, but distinguished using Arabic numbers, such as for Group VIA-1 PLA(2) and VIA-2 PLA(2)'s. These four criteria have led to the expansion or realignment of Groups VI, VII and VIII, as well as the addition of Group XI PLA(2) from plants.  相似文献   

9.
W Yuan  D M Quinn  P B Sigler  M H Gelb 《Biochemistry》1990,29(25):6082-6094
The action of the phospholipases A2 (PLA2s) from Naja naja naja, Naja naja atra, and Crotalus atrox venoms as well as the enzyme from porcine pancreas on a number of short-chain, water-soluble substrates was studied. The inhibition of these enzymes by short-chain phosphonate- and thiophosphonate-containing phospholipid analogues was also examined. The kinetic patterns observed for the action of the venom PLA2s on substrates containing phosphocholine head groups all deviated from a classical Michaelis-Menten-type behavior. With a substrate containing an anionic head group, the kinetic pattern observed was more normal. In contrast, Michaelis-Menten-type behavior was observed for the action of the porcine pancreatic PLA2 acting on all of the substrates studied. A short-chain phospholipid analogue in which the enzyme-susceptible ester was replaced with a phosphonate group was found to be a tight-binding inhibitor of the venom PLA2s with IC50 values that were some 10(4)-10(5)-fold lower than the concentration of substrate used in the assay. The degree of inhibition was found to depend dramatically on the stereochemical arrangement of substituents in the inhibitor which strongly suggests that the inhibitors are binding directly to the active site of the PLA2s. By comparison, the phosphonate analogue functioned as a poor inhibitor of the porcine pancreatic PLA2. Direct inhibitor binding studies indicated that the short-chain phosphonate inhibitor bound weakly to the venom enzymes in the absence of the short-chain substrates. Several other unusual features of the inhibition were also observed. The data are interpreted in terms of a model in which the enzyme and substrate form a lipid-protein aggregate at substrate concentrations below the critical micelle concentration (cmc). Possible reasons for the selective binding of the inhibitor to the enzyme-substrate microaggregate are discussed.  相似文献   

10.
F Ghomashchi  T O'Hare  D Clary  M H Gelb 《Biochemistry》1991,30(29):7298-7305
The kinetics of hydrolysis of phospholipid vesicles by phospholipase A2 (PLA2) in the scooting mode can be described by the Michaelis-Menten formalism for the action of the enzyme in the interface (E*). E* + S in equilibrium E*S in equilibrium E*P in equilibrium E* + Products The values of the interfacial rate constants cannot be obtained by classical methods because the concentration of the substrate within the lipid bilayer is not easily manipulated. In the present study, carbonyl-carbon heavy atom isotope effects for the hydrolysis of phospholipids have been measured in both vesicles and in mixed micelles in which the phospholipid was present in the nonionic detergent Triton X-100. A large [14C]carbonyl carbon isotope effect of 1.12 +/- 0.02 was measured for the cobra venom PLA2-catalyzed hydrolysis of dipalmitoylphosphatidylcholine in Triton X-100. In contrast, no isotope effect (1.01 +/- 0.01) was measured for the action of the porcine pancreatic and cobra venom enzymes on vesicles of dimyristoylphosphatidylmethanol in the scooting mode. In a second experiment, the hydrolysis of vesicles was carried out in oxygen-18 enriched water. Analysis of the released fatty acid product by mass spectrometry showed that it contained only a single oxygen-18. All of these results were used to estimate both the forward and reverse commitments to catalysis. The lack of doubly labeled fatty acid demonstrated that the product is released from the E*P complex faster than the reverse of the esterolysis step. The small isotope effect in vesicles demonstrated that the E*S complex goes on to products faster than substrate is released from the enzyme. The relevance of these results to an understanding of substrate specificity and inhibition of PLA2 is discussed. In addition, the conditions placed on the values of the rate constants obtained in the present study together with results obtained in the other studies described in this series of papers have led to the evaluation of most of the interfacial rate constants for the hydrolysis of phospholipid vesicles by PLA2.  相似文献   

11.
Bai S  Jain MK  Berg OG 《Biochemistry》2008,47(9):2899-2907
Pig pancreatic IB phospholipase A 2 (PLA2) forms three distinguishable premicellar E i (#) ( i = 1, 2, and 3) complexes at successively higher decylsulfate concentrations. The Hill coefficient for E 1 (#) is n 1 = 1.6, and n 2 and n 3 for E 2 (#) and E 3 (#) are about 8 each. Saturation-transfer difference nuclear magnetic resonance (NMR) and other complementary results with PLA2 show that decylsulfate molecules in E 2 (#) and E 3 (#) are contiguously and cooperatively clustered on the interface-binding surface or i-face that makes contact with the substrate interface. In these complexes, the saturation-transfer difference NMR signatures of (1)H in decylsulfate are different. The decylsulfate epitope for the successive E i (#) complexes increasingly resembles the micellar complex formed by the binding of PLA2 to preformed micelles. Contiguous cooperative amphiphile binding is predominantly driven by the hydrophobic effect with a modest electrostatic shielding of the sulfate head group in contact with PLA2. The formation of the complexes is also associated with structural change in the enzyme. Calcium affinity of E 2 (#) appears to be modestly lower than that of the free enzyme and E 1 (#). Binding of decylsulfate to the i-face does not require the catalytic calcium required for the substrate binding to the active site and for the chemical step. These results show that E i (#) complexes are useful to structurally characterize the cooperative sequential and contiguous binding of amphiphiles on the i-face. We suggest that the allosteric changes associated with the formation of discrete E i (#) complexes are surrogates for the catalytic and allosteric states of the interface activated PLA2.  相似文献   

12.
Burke JE  Karbarz MJ  Deems RA  Li S  Woods VL  Dennis EA 《Biochemistry》2008,47(24):6451-6459
Deuterium exchange mass spectrometric evaluation of the cobra venom (Naja naja naja) group IA phospholipase A 2 (GIA PLA 2) was carried out in the presence of metal ions Ca (2+) and Ba (2+) and phospholipid vesicles. Novel conditions for digesting highly disulfide bonded proteins and a methodology for studying protein-lipid interactions using deuterium exchange have been developed. The enzyme exhibits unexpectedly slow rates of exchange in the two large alpha-helices of residues 43-53 and 89-101, which suggests that these alpha-helices are highly rigidified by the four disulfide bonds in this region. The binding of Ca (2+) or Ba (2+) ions decreased the deuterium exchange rates for five regions of the protein (residues 24-27, 29-40, 43-53, 103-110, and 111-114). The magnitude of the changes was the same for both ions with the exception of regions of residues 24-27 and 103-110 which showed greater changes for Ca (2+). The crystal structure of the N. naja naja GIA PLA 2 contains a single Ca (2+) bound in the catalytic site, but the crystal structures of related PLA 2s contain a second Ca (2+) binding site. The deuterium exchange studies reported here clearly show that in solution the GIA PLA 2 does in fact bind two Ca (2+) ions. With dimyristoylphosphatidylcholine (DMPC) phospholipid vesicles with 100 microM Ca (2+) present at 0 degrees C, significant areas on the i-face of the enzyme showed decreases in the rate of exchange. These areas included regions of residues 3-8, 18-21, and 56-64 which include Tyr-3, Trp-61, Tyr-63, and Phe-64 proposed to penetrate the membrane surface. These regions also contained Phe-5 and Trp-19, proposed to bind the fatty acyl tails of substrate.  相似文献   

13.
The complete amino acid sequence of human heart (R)-3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) has been deduced from the nucleotide sequence of cDNA clones. This mitochondrial enzyme has an absolute and specific requirement of phosphatidylcholine for enzymic activity (allosteric activator) and is an important prototype of lipid-requiring enzymes. Despite extensive studies, the primary sequence has not been available and is now reported. The mature form of the enzyme consists of 297 amino acids (predicted M(r) of 33,117), does not appear to contain any transmembrane helices, and is homologous with the family of short-chain alcohol dehydrogenases (SC-ADH) (Persson, B., Krook, M., and J?rnvall, H. (1991) Eur. J. Biochem. 200, 537-543) (30% residue identity with human 17 beta-hydroxysteroid dehydrogenase). The first two-thirds of the enzyme includes both putative coenzyme binding and active site conserved residues and exhibits a predicted secondary structure motif (alternating alpha-helices and beta-sheet) characteristic of SC-ADH. Bovine heart peptide sequences (174 residues in nine sequences determined by microsequencing) have extensive homology (89% identical residues) with the deduced human heart sequence. The C-terminal third (Asn-194 to Arg-297) shows little sequence homology with the SC-ADH and likely contains elements that determine the substrate specificity for the enzyme including the phospholipid (phosphatidylcholine) binding site(s). Northern blot analysis identifies a 1.3-kilobase mRNA encoding the enzyme in heart tissue.  相似文献   

14.
Swift RV  McCammon JA 《Biochemistry》2008,47(13):4102-4111
The addition of a N7-methyl guanosine cap to the 5' end of nascent mRNA is carried out by the mRNA-capping enzyme, a two-domain protein that is a member of the nucleotidyltransferase superfamily. The mRNA-capping enzyme is composed of a catalytic nucleotidyltransferase domain and a noncatalytic oligonucleotide/oligosaccharide binding (OB) domain. Large-scale domain motion triggered by substrate binding mediates catalytically requisite conformational rearrangement of the GTP substrate prior to the chemical step. In this study, we employ targeted molecular dynamics (TMD) on the PBCV-1 capping enzyme to probe the global domain dynamics and internal dynamics of conserved residues during the conformational transformation from the open to the closed state. Analysis of the resulting trajectories along with structural and sequence homology to other members of the superfamily allows us to suggest a conserved mechanism of conformational rearrangements spanning all mRNA-capping enzymes and all ATP-dependent DNA ligases. Our results suggest that the OB domain moves quasi-statically toward the nucleotidyltransferase domain, pivoting about a short linker region. The approach of the OB domain brings a conserved RxDK sequence, an element of conserved motif VI, within proximity of the triphosphate of GTP, destabilizing the unreactive conformation and thereby allowing thermal fluctuations to partition the substrate toward the catalytically competent state.  相似文献   

15.
M K Jain  J Rogers  O Berg  M H Gelb 《Biochemistry》1991,30(29):7340-7348
Polymyxin B (Px), a cyclic cationic peptide, was shown to act as a potent activator of interfacial catalysis by phospholipase A2 (PLA2) acting on dimyristoylphosphatidylmethanol vesicles in the scooting mode. A 7-fold increase in the initial enzymatic velocity was seen with the pig pancreatic PLA2 in the presence of 1 microM Px. Initial experiments including the dependency of the degree of activation by Px on the source of the PLA2 suggested that Px bound to a cationic binding site on the enzyme. However, numerous additional observations led to the conclusion that activation by Px was due to its effects on the substrate interface. For example, the activation by Px was only seen when the PLA2 acted on small vesicles rather than larger ones, and all of the available substrate was eventually hydrolyzed in the presence of a small mole fraction of Px. Px did not promote the intervesicle exchange of PLA2, and it did not alter the binding of the evidence led to the conclusion that Px activated interfacial catalysis by promoting the replenishment of substrate in the enzyme-containing vesicles. When PLA2 was acting on small vesicles in the scooting mode, the observed initial velocity was lower than that measured with large vesicles because the surface concentration of substrate decreased relatively rapidly in the small vesicles. Px promoted the transfer of phospholipids between the vesicles and functioned as an activator by keeping the mole fraction of substrate in the enzyme-containing vesicles close to 1. This effect of Px was consistent with the ability of polycationic peptides to induce the intervesicle mixing of anionic phospholipids in vesicles [Bondeson, J., & Sundler, R. (1990) Biochim. Biophys. Act 1026, 186-194]. Activation by substrate replenishment was quantitatively predicted by the theory of interfacial catalysis on vesicles in the scooting mode. The role of substrate replenishment in the kinetics of interfacial catalysis in phospholipid micelles was discussed. Finally, the protocols developed in this paper were outlined in view of their utility in the analysis of activators of interfacial catalysis.  相似文献   

16.
Ray S  Scott JL  Tatulian SA 《Biochemistry》2007,46(45):13089-13100
Phospholipase A2 (PLA2) enzymes act at the membrane-water interface to access their phospholipid substrate from the membrane. They are regulated by diverse factors, including the membrane charge, fluidity, mode of membrane binding (insertion, orientation), and allosteric conformational effects. Relative contributions of these factors to the complex kinetics of PLA2 activation are not well understood. Here we examine the effects of thermal phase transitions and the surface charge of phospholipid membranes on the activation of human pancreatic PLA2. The temperature dependence of the initial catalytic rate of PLA2 peaks around the lipid phase transition temperature (Tm) when Tm is not too far from physiological temperatures (30-40 degrees C), and the peak is higher in the presence of anionic membranes. High PLA2 activity can be induced by thermal perturbations of the membrane. Temperature-dependent fluorescence quenching experiments show that despite dramatic effects of the lipid phase transition on PLA2 activity, the membrane insertion depth of PLA2 increases only modestly above Tm. The data show that membrane structural disorder, and not the depth of membrane insertion, plays a major role in PLA2 activity.  相似文献   

17.
F Ghomashchi  B Z Yu  O Berg  M K Jain  M H Gelb 《Biochemistry》1991,30(29):7318-7329
The binding equilibrium of phospholipase A2 (PLA2) to the substrate interface influences many aspects of the overall kinetics of interfacial catalysis by this enzyme. For example, the interpretation of kinetic data on substrate specificity was difficult when there was a significant kinetic contribution from the interfacial binding step to the steady-state catalytic turnover. This problem was commonly encountered with vesicles of zwitterionic phospholipids, where the binding of PLA2 to the interface was relatively poor. The action of PLA2 on phosphatidylcholine (PC) vesicles containing a small amount of anionic phospholipid, such as phosphatidic acid (PA), was studied. It was shown that the hydrolysis of these mixed lipid vesicles occurs in the scooting mode in which the enzyme remains tightly bound to the interface and only the substrate molecules present on the outer monolayer of the target vesicle became hydrolyzed Thus the phenomenon of scooting mode hydrolysis was not restricted to the action of PLA2 on vesicles of pure anionic phospholipids, but it was also observed with vesicles of zwitterionic lipids as long as a critical amount of anionic compound was present. Under such conditions, the initial rate of hydrolysis of PC in the mixed PC/PA vesicles was enhanced more than 50-fold. Binding studies of PLA2 to vesicles and kinetic studies in the scooting mode demonstrated that the enhancement of PC hydrolysis in the PC/PA covesicles was due to the much higher affinity of the enzyme toward covesicles compared to vesicles of pure PC phospholipids. A novel and technically simple protocol for accurate determination of the substrate specificity of PLA2 at the interface was also developed by using a double-radiolabel approach. Here, the action of PLA2 in the scooting mode was studied on vesicles of the anionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphomethanol that contained small amounts of 3H- and 14C-labeled phospholipids. From an analysis of the 3H and 14C radioactivity in the released fatty acid products, the ratio of substrate specificity constants (kcat/KMS) was obtained for any pair of radiolabeled substrates. These studies showed that the PLA2s from pig pancreas and Naja naja naja venom did not discriminate between phosphatidylcholine and phosphatidylethanolamine phospholipids or between phospholipids with saturated versus unsaturated acyl chains and that the pig enzyme had a slight preference for anionic phospholipids (2-3-fold). The described protocol provided an accurate measure of the substrate specificity of PLA2 without complications arising from the differences in binding affinities of the enzyme to vesicles composed of pure phospholipids.  相似文献   

18.
Phospholipase A2 (PLA2) hydrolyzes phospholipids to free fatty acids and lysolipids and thus initiates the biosynthesis of eicosanoids and platelet-activating factor, potent mediators of inflammation, allergy, apoptosis, and tumorigenesis. The relative contributions of the physical properties of membranes and the structural changes in PLA2 to the interfacial activation of PLA2, that is, a strong increase in the lipolytic activity upon binding to the surface of phospholipid membranes or micelles, are not well understood. The present results demonstrate that both binding of PLA2 to phospholipid bilayers and its activity are facilitated by membrane surface electrostatics. Higher PLA2 activity toward negatively charged membranes is shown to result from stronger membrane-enzyme electrostatic interactions rather than selective hydrolysis of the acidic lipid. Phospholipid hydrolysis by PLA2 is followed by preferential removal of the liberated lysolipid and accumulation of the fatty acid in the membrane that may predominantly modulate PLA2 activity by affecting membrane electrostatics and/or morphology. The previously described induction of a flexible helical structure in PLA2 during interfacial activation was more pronounced at higher negative charge densities of membranes. These findings identify a reciprocal relationship between the membrane surface properties, strength of membrane binding of PLA2, membrane-induced structural changes in PLA2, and the enzyme activation.  相似文献   

19.
Blair DE  van Aalten DM 《FEBS letters》2004,570(1-3):13-19
Family 4 carbohydrate esterases deacetylate polymeric carbohydrate substrates such as chitin, acetyl xylan and peptidoglycan. Although some of these enzymes have recently been enzymologically characterised, neither their structure nor their reaction mechanism has been defined. Sequence conservation in this family has pointed to a conserved core, termed the NodB homology domain. We describe the cloning, purification and 1.9 Å crystal structure of PdaA, a peptidoglycan deacetylase from Bacillus subtilis. The enzyme assumes a fold related to a (β/)8 barrel, with a long groove on the surface of the protein that harbours all conserved residues. A complex with the substrate analogue N-acetyl-glucosamine was refined to 2.25 Å resolution, revealing interactions of an aspartic acid and three histidines, all conserved in the NodB homology domain, with the ligand. The PdaA structure provides a template for interpreting the wealth of sequence data on family 4 carbohydrate esterases in a structural context and represents a first step towards understanding the reaction mechanism of this family of enzymes.  相似文献   

20.
Calcium-independent phospholipase A(2): structure and function   总被引:4,自引:0,他引:4  
The classical Ca(2+)-independent phospholipase A(2) enzyme, now known as Group VIA PLA(2), was initially purified and characterized from the P388D(1) macrophage-like cell line. The corresponding cDNA was subsequently cloned from a variety of sources, and it is now known that multiple splice variants of the enzyme are expressed, some of which may act as negative regulators of the active enzyme. Group VIA PLA(2) has a consensus lipase motif (GTSTG) containing the catalytic serine, is 85-88 kDa, and exists in an aggregated form. The enzyme contains multiple ankyrin repeats, which may play a role in oligomerization. The Group VIA enzyme exhibits lysophospholipase activity as well as phospholipase A(2) activity, and it is capable of hydrolyzing a wide variety of phospholipid substrates. A major function of Group VIA PLA(2) is to mediate phospholipid remodeling, but the enzyme may play other roles as well. Other Ca(2+)-independent PLA(2) enzymes have more recently been identified, and it may be possible to discriminate between the various Ca(2+)-independent PLA(2) enzymes based on sequence or inhibitor-sensitivity. However, the physiological functions of the newly identified enzymes have yet to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号