首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugation of proteins to copolymers from poly(acrylic acid) grafted onto PEO-PPO-PEO backbone (Pluronic-PAA) following adsorption of the conjugates onto hydrophobic surfaces is reported. Insulin-Pluronic-PAA conjugates show negligible internalization of insulin into human uterine smooth muscle cells as well as enhancement of mitogenic activity. Glucose-induced release of glycated albumin complexed with a Pluronic-PAA-concanavalin conjugate and adsorbed onto polystyrene nanospheres may provide a model for a glucose-responsive protein delivery system or a heterogeneous diagnostic device.  相似文献   

2.
The performance of an immuno-analytical system can be assessed in terms of its analytical sensitivity,i.e., the detection limit of an analyte, which is determined by the amount of analyte molecules bound to the capture antibody that has been immobilized onto a solid surface. To increase the number of the binding complexes, we have investigated a site-directed immobilization of an antibody that has the ability to resolve a current problem associated with a random arrangement of the insolubilized immunoglobulin. The binding molecules were chemically reduced to produce thiol groups that were limited at the hinge region, and then, the reduced products were coupled to biotin. This biotinylated antibody was bound to a streptavidincoated surface via the streptavidin-biotin reaction. This method can control the orientation of the antibody molecules present on a solid surface and also can significantly reduce the possibility of steric hindrance in the antigen-antibody reactions. In a two-site immunoassay, the introduction of the site-directly immobilized antibody as the capture enhanced the sensitivity of analyte detection approximately 10 times compared to that of the antibody randomly coupled to biotin. Such a novel approach would offer a protocol of antibody immobilization in order for the possibility of constructing a high performance immunochip.  相似文献   

3.
Antibody immobilization on a solid surface is inevitable in the preparation of immunochips/sensors. Antibody-binding proteins such as proteins A and G have been extensively employed to capture antibodies on sensor surfaces with right orientations, maintaining their full functionality. Because of their synthetic versatility and stability, in general, small molecules have more advantages than proteins. Nevertheless, no small molecule has been used for oriented and specific antibody immobilization. Here is described a novel strategy to immobilize an antibody on various sensor surfaces by using a small antibody-binding peptide. The peptide binds specifically to the Fc domain of immunoglobulin G (IgG) and, therefore, affords a properly oriented antibody surface. Surface plasmon resonance analysis indicated that a peptide linked to a gold chip surface through a hydrophilic linker efficiently captured human and rabbit IgGs. Moreover, antibodies captured by the peptide exhibited higher antigen binding capacity compared with randomly immobilized antibodies. Peptide-mediated antibody immobilization was successfully applied on the surfaces of biosensor substrates such as magnetic particles and glass slides. The antibody-binding peptide conjugate introduced in this work is the first small molecule linker that offers a highly stable and specific surface platform for antibody immobilization in immunoassays.  相似文献   

4.
Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For ω‐gliadin, a monolayer was formed on the mica substrate during a period of ~2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the ω‐gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With γ‐gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 74–84, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
One critical aspect for the development of label-free immunosensors is the employment of highly uniform and repeatable antibody immobilization techniques. In this study, we investigated the use of two different silane molecules (3-glycidyloxypropyl)trimethoxysilane (GPS), and (3-mercaptopropyl)trimethoxysilane (MTS) for the immobilization of fluorescently labeled IgG antibodies on planar ZnO surfaces. The chemical modification of the surfaces was investigated using water contact angle measurements, AFM, and fluorescence microscopy. The results of the water contact angle measurements indicate increased surface hydrophobicity after treatment with GPS and MTS as compared to the control. Surface modification was further verified through AFM measurements which demonstrate an increased surface roughness and particle height after treatment with antibodies. The results of the fluorescence studies indicate that the immobilization protocol employing MTS produced 21% higher fluorescence on average with greater uniformity than the GPS-based protocol, which indicates a higher overall density in antibody coverage on the surface of the ZnO. Acoustic sensor tests were employed to confirm the functionality of sensors treated with the MTS protocol. The results indicate that the immobilization protocol imparts sensitivity and specificity to the ZnO-based devices.  相似文献   

6.
We demonstrate the applicability of sequential Diels-Alder and azide-alkyne [3 + 2] cycloaddition reactions (click chemistry) for the immobilization of carbohydrates and proteins onto a solid surface. An alpha,omega-poly(ethylene glycol) (PEG) linker carrying alkyne and cyclodiene terminal groups was synthesized and immobilized onto an N-(epsilon-maleimidocaproyl) (EMC)-functionalized glass slide via an aqueous Diels-Alder reaction. In the process, an alkyne-terminated PEGylated surface was provided for the conjugation of azide-containing biomolecules via click chemistry, which proceeded to completion at low temperature and in aqueous solvent. As anticipated, alkyne, azide, cyclodiene, and EMC are independently stable and do not react with common organic reagents nor functional groups in biomolecules. Given an appropriate PEG linker, sequential Diels-Alder and azide-alkyne [3 + 2] cycloaddition reactions provide an effective strategy for the immobilization of a wide range of functionally complex substances onto solid surfaces.  相似文献   

7.
Binding of laminin to glycolipids of neuronal membranes was studied with a thin-layer chromatography overlay assay. The major brain ganglioside GD1A was the main binding component, when chromatograms containing the same molar amount of the different brain gangliosides and the brain sulfatide were incubated with laminin at physiological ionic strength. The possible role of laminin binding to brain gangliosides in laminin-neuron interactions was studied with adhesion assays. It was found that binding of rat brain neurons to laminin is blocked by 10-40 microM brain gangliosides but not by sulfatide. The inhibition by the gangliosides is suggested to be due to competition with the cell surface interaction sites of laminin and not to binding of the gangliosides to the cells. Our findings support the idea that the adhesive and neurite-promoting effect of laminin is dependent on its interaction with gangliosides at the neuronal cell surfaces.  相似文献   

8.
This article discusses the preparation of novel Paper-PEG interpenetrating polymer network-based membranes as inexpensive alternative to currently available adsorptive membranes. The Paper-PEG membranes were developed for carrying out hydrophobic interaction membrane chromatography (HIMC). PEG is normally very hydrophilic but can undergo phase separation and become hydrophobic in the presence of high antichaotropic salt concentrations. Two variants of the Paper-PEG membranes, Paper-PEG 1 and Paper-PEG 2 were prepared by grafting different amounts of the polymer on filter paper and these were tested for their hydraulic properties and antibody binding capacity. The better of the two membranes (Paper-PEG 1) was then used for purifying the monoclonal antibody hIgG1-CD4 from simulated mammalian cell culture supernatant. The processing conditions required for purification were systematically optimized. The dynamic antibody binding capacity of the Paper-PEG 1 membrane was about 9 mg/mL of bed volume. A single step membrane chromatographic process using Paper-PEG 1 membrane gave high monoclonal antibody purity and recovery. The hydraulic permeability of the paper-based membrane was high and was maintained even after many runs, indicating that membrane fouling was negligible and the membrane was largely incompressible.  相似文献   

9.
Cell-to-support interaction and cell-to-cell aggregation phenomena have been studied in a model system composed of intact yeast cells and Phenyl-Streamline adsorbents. Biomass components and beaded adsorbents were characterized by contact angle determinations with three diagnostic liquids and zeta potential measurements. Subsequently, free energy of interaction vs. distance profiles between interacting surfaces was calculated in the aqueous media provided by operating mobile phases. The effect of pH and ammonium sulphate concentration within the normal operating ranges was evaluated. Calculation indicated that moderate interaction between cell particles and adsorbent beads can develop in the presence of salt. Cell-to-cell aggregation was suspected to occur at high salt concentration and neutral pH. Predictions based on the application of the XDLVO approach were confirmed by independent experimental methods like biomass deposition experiments and laser diffraction spectroscopy. Understanding biomass attachment onto hydrophobic supports can help in alleviating process limitations normally encountered during expanded bed adsorption of bioproducts.  相似文献   

10.
Using a high-throughput surface discovery approach, we have generated a 1600-member library of metal-containing surfaces and screened them for antibody binding potential. The surface library assembly involved graft modification of argon plasma-treated polyvinylidenedifluoride (PVDF) membranes with alternating maleic anhydride-styrene copolymer followed by anhydride ring opening with a range of secondary amines and microarray contact printing of transition metal complexes. The microarrays of metal-containing surfaces were then tested for their antibody binding capacity by incubation with a biotinylated mouse antibody in a chemiluminescence assay. A total of 11 leads were identified from the first screen, constituting a "hit" rate of 0.7%. A smaller 135-member surface library was then synthesized and screened to optimize existing hits and generate additional leads. To demonstrate the applicability of these surfaces to other formats, high-binding surface leads were then transferred onto Luminex beads for use in a bead flow cytometric immunoassay. The novel one-step antibody coupling process increased assay sensitivity of a Luminex tumor necrosis factor immunoassay. These high-binding surfaces do not require prior incorporation of polyhistidine tags or posttreatments such as oxidation to achieve essentially irreversible binding of immunoglobulin G.  相似文献   

11.
《MABS-AUSTIN》2013,5(4):852-858
Hydrophobic interaction chromatography-high performance liquid chromatography (HIC-HPLC) is a powerful analytical method used for the separation of molecular variants of therapeutic proteins. The method has been employed for monitoring various post-translational modifications, including proteolytic fragments and domain misfolding in etanercept (Enbrel®); tryptophan oxidation, aspartic acid isomerization, the formation of cyclic imide, and α amidated carboxy terminus in recombinant therapeutic monoclonal antibodies; and carboxy terminal heterogeneity and serine fucosylation in Fc and Fab fragments. HIC-HPLC is also a powerful analytical technique for the analysis of antibody-drug conjugates. Most current analytical columns, methods, and applications are described, and critical method parameters and suitability for operation in regulated environment are discussed, in this review.  相似文献   

12.
Hydrophobic interaction chromatography-high performance liquid chromatography (HIC-HPLC) is a powerful analytical method used for the separation of molecular variants of therapeutic proteins. The method has been employed for monitoring various post-translational modifications, including proteolytic fragments and domain misfolding in etanercept (Enbrel®); tryptophan oxidation, aspartic acid isomerization, the formation of cyclic imide, and α amidated carboxy terminus in recombinant therapeutic monoclonal antibodies; and carboxy terminal heterogeneity and serine fucosylation in Fc and Fab fragments. HIC-HPLC is also a powerful analytical technique for the analysis of antibody-drug conjugates. Most current analytical columns, methods, and applications are described, and critical method parameters and suitability for operation in regulated environment are discussed, in this review.  相似文献   

13.
Polypropylene and polyethylene surfaces are activated by introducing an active functional group through 1-fluoro-2 nitro-4-azidobenzene by UV irradiation. Horseradish peroxidase and glucose oxidase are immobilized onto the activated surfaces, simply by incubating the enzymes at 37 degrees C. When untreated surfaces are used, insignificant immobilization of the enzymes is observed.  相似文献   

14.
15.
Direct binding and characterization of lipase onto magnetic nanoparticles   总被引:4,自引:0,他引:4  
Lipase was covalently bound onto Fe(3)O(4) magnetic nanoparticles (12.7 nm) via carbodiimide activation. The Fe(3)O(4) magnetic nanoparticles were prepared by coprecipitating Fe(2+) and Fe(3+) ions in an ammonia solution and treating under hydrothermal conditions. The analyses of transmission electron microscopy (TEM) and X-ray diffraction (XRD) showed that the size and structure of magnetic nanoparticles had no significant changes after enzyme binding. Magnetic measurement revealed the resultant lipase-bound magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu/g (only slightly lower than that of the naked ones (64 emu/g)), a remanent magnetization of 1.0 emu/g, and a coercivity of 7.5 Oe. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of lipase onto magnetic nanoparticles. The binding efficiency of lipase was 100% when the weight ratio of lipase bound to Fe(3)O(4) nanoparticles was below 0.033. Compared to the free enzyme, the bound lipase exhibited a 1.41-fold enhanced activity, a 31-fold improved stability, and better tolerance to the variation of solution pH. For the hydrolysis of pNPP by bound lipase at pH 8, the activation energy within 20-35 degrees C was 6.4 kJ/mol, and the maximum specific activity and Michaelis constant at 25 degrees C were 1.07 micromol/min mg and 0.4 mM, respectively. It revealed that the available active sites of lipase and their affinity to substrate increased after being bound onto magnetic nanoparticles.  相似文献   

16.
One aspiration for the formulation of human monoclonal antibodies (mAb) is to reach high solution concentrations without compromising stability. Protein surface activity leading to instability is well known, but our understanding of mAb adsorption to the solid-liquid interface in relevant pH and surfactant conditions is incomplete. To investigate these conditions, we used total internal reflection fluorescence (TIRF) and neutron reflectometry (NR). The mAb tested (“mAb-1”) showed highest surface loading to silica at pH 7.4 (~12 mg/m2), with lower surface loading at pH 5.5 (~5.5 mg/m2, further from its pI of 8.99) and to hydrophobized silica (~2 mg/m2). The extent of desorption of mAb-1 from silica or hydrophobized silica was related to the relative affinity of polysorbate 20 or 80 for the same surface. mAb-1 adsorbed to silica on co-injection with polysorbate (above its critical micelle concentration) and also to silica pre-coated with polysorbate. A bilayer model was developed from NR data for mAb-1 at concentrations of 50–5000 mg/L, pH 5.5, and 50–2000 mg/L, pH 7.4. The inner mAb-1 layer was adsorbed to the SiO2 surface at near saturation with an end-on” orientation, while the outer mAb-1 layer was sparse and molecules had a “side-on” orientation. A non-uniform triple layer was observed at 5000 mg/L, pH 7.4, suggesting mAb-1 adsorbed to the SiO2 surface as oligomers at this concentration and pH. mAb-1 adsorbed as a sparse monolayer to hydrophobized silica, with a layer thickness increasing with bulk concentration - suggesting a near end-on orientation without observable relaxation-unfolding.  相似文献   

17.
18.
The effectiveness of therapeutic monoclonal antibodies (mAbs) is governed not only by their bioactivity, but also by their biophysical properties. Assays for rapidly evaluating the biophysical properties of mAbs are valuable for identifying those most likely to exhibit superior properties such as high solubility, low viscosity and slow serum clearance. Analytical hydrophobic interaction chromatography (HIC), which is performed at high salt concentrations to enhance hydrophobic interactions, is an attractive assay for identifying mAbs with low hydrophobicity. However, this assay is low throughput and thus not amenable to processing the large numbers of mAbs that are commonly generated during antibody discovery. Therefore, we investigated whether an alternative, higher throughput, assay could be developed that is based on evaluating antibody self-association at high salt concentrations using affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). Our approach is to coat gold nanoparticles with polyclonal anti-human antibodies, use these conjugates to immobilize human mAbs, and evaluate mAb self-interactions by measuring the plasmon wavelengths of the antibody conjugates as a function of ammonium sulfate concentration. We find that hydrophobic mAbs, as identified by HIC, generally show significant self-association at low to moderate ammonium sulfate concentrations, while hydrophilic mAbs typically show self-association only at high ammonium sulfate concentrations. The correlation between AC-SINS and HIC measurements suggests that our assay, which can evaluate tens to hundreds of mAbs in a parallel manner and requires only small (microgram) amounts of antibody, will enable early identification of mAb candidates with low hydrophobicity and improved biophysical properties.  相似文献   

19.
《MABS-AUSTIN》2013,5(3):553-561
The effectiveness of therapeutic monoclonal antibodies (mAbs) is governed not only by their bioactivity, but also by their biophysical properties. Assays for rapidly evaluating the biophysical properties of mAbs are valuable for identifying those most likely to exhibit superior properties such as high solubility, low viscosity and slow serum clearance. Analytical hydrophobic interaction chromatography (HIC), which is performed at high salt concentrations to enhance hydrophobic interactions, is an attractive assay for identifying mAbs with low hydrophobicity. However, this assay is low throughput and thus not amenable to processing the large numbers of mAbs that are commonly generated during antibody discovery. Therefore, we investigated whether an alternative, higher throughput, assay could be developed that is based on evaluating antibody self-association at high salt concentrations using affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). Our approach is to coat gold nanoparticles with polyclonal anti-human antibodies, use these conjugates to immobilize human mAbs, and evaluate mAb self-interactions by measuring the plasmon wavelengths of the antibody conjugates as a function of ammonium sulfate concentration. We find that hydrophobic mAbs, as identified by HIC, generally show significant self-association at low to moderate ammonium sulfate concentrations, while hydrophilic mAbs typically show self-association only at high ammonium sulfate concentrations. The correlation between AC-SINS and HIC measurements suggests that our assay, which can evaluate tens to hundreds of mAbs in a parallel manner and requires only small (microgram) amounts of antibody, will enable early identification of mAb candidates with low hydrophobicity and improved biophysical properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号